Skip to main content

Advertisement

Log in

Genetic engineering and sustainable production of ornamentals: current status and future directions

  • Review
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Through the last decades, environmentally and health-friendly production methods and conscientious use of resources have become crucial for reaching the goal of a more sustainable plant production. Protection of the environment requires careful consumption of limited resources and reduction of chemicals applied during production of ornamental plants. Numerous chemicals used in modern plant production have negative impacts on human health and are hazardous to the environment. In Europe, several compounds have lost their approval and further legal restrictions can be expected. This review presents the more recent progress of genetic engineering in ornamental breeding, delivers an overview of the biological background of the used technologies and critically evaluates the usefulness of the strategies to obtain improved ornamental plants. First, genetic engineering is addressed as alternative to growth retardants, comprising recombinant DNA approaches targeting relevant hormone pathways, e.g. the gibberellic acid (GA) pathway. A reduced content of active GAs causes compact growth and can be facilitated by either decreased anabolism, increased catabolism or altered perception. Moreover, compactness can be accomplished by using a natural transformation approach without recombinant DNA technology. Secondly, metabolic engineering approaches targeting elements of the ethylene signal transduction pathway are summarized as a possible alternative to avoid the use of chemical ethylene inhibitors. In conclusion, molecular breeding approaches are dealt with in a way allowing a critical biological assessment and enabling the scientific community and public to put genetic engineering of ornamental plants into a perspective regarding their usefulness in plant breeding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aida R, Yoshida T, Ichimura K, Goto R, Shibata M (1998) Extension of flower longevity in transgenic torenia plants incorporating ACC oxidase transgene. Plant Sci 138:91–101

    CAS  Google Scholar 

  • Alonso JM, Hirayama T, Roman G, Nourizadeh S, Ecker JR (1999) EIN2, a bifunctional transducer of ethylene and stress responses in Arabidopsis. Science 284:2148–2152

    PubMed  CAS  Google Scholar 

  • Appleford NE, Wilkinson MD, Ma Q, Evans DJ, Stone MC, Pearce SP, Powers SJ, Thomas SG, Jones HD, Phillips AL, Hedden P, Lenton JR (2007) Decreased shoot stature and grain alpha-amylase activity following ectopic expression of a gibberellin 2-oxidase gene in transgenic wheat. J Exp Bot 58:3213–3226

    PubMed  CAS  Google Scholar 

  • Argueso CT, Hansen M, Kieber JJ (2007) Regulation of ethylene biosynthesis. J Plant Growth Regul 26:92–105

    CAS  Google Scholar 

  • Ascough GD, Erwin JE, van Staden J (2008) Biotechnology and ornamental horticulture. S Afr J Bot 74:357

    Google Scholar 

  • Auer C (2008) Ecological risk assessment and regulation for genetically-modified ornamental plants. Crit Rev Plant Sci 27:255–271

    Google Scholar 

  • Biemelt S, Tschiersch H, Sonnewald U (2004) Impact of altered gibberellin metabolism on biomass accumulation, lignin biosynthesis, and photosynthesis in transgenic tobacco plants. Plant Physiol 135:254–265

    PubMed  CAS  Google Scholar 

  • Blankenship S, Dole J (2003) 1-Methylcyclopropene: a review. Postharvest Biol Technol 28:1–25

    CAS  Google Scholar 

  • Bleecker AB, Estelle MA, Somerville C, Kende H (1988) Insensitivity to ethylene conferred by a dominant mutation in Arabidopsis thaliana. Science 241:1086–1089

    PubMed  CAS  Google Scholar 

  • Bovy A, Angenent G, Dons H, van Altvorst A (1999) Heterologous expression of the Arabidopsis etr1-1 allele inhibits the senescence of carnation flowers. Mol Breed 5:301–308

    CAS  Google Scholar 

  • Bulgakov VP (2008) Functions of rol genes in plant secondary metabolism. Biotechnol Adv 26:318–324

    PubMed  CAS  Google Scholar 

  • Busov VB, Meilan R, Pearce DW, Ma C, Rood SB, Strauss SH (2003) Activation tagging of a dominant gibberellin catabolism gene (GA 2-oxidase) from poplar that regulates tree stature. Plant Physiol 132:1283–1291

    PubMed  CAS  Google Scholar 

  • Casanova E, Trillas MI, Moysset L, Vainstein A (2005) Influence of rol genes in floriculture. Biotechnol Adv 23:3–39

    PubMed  CAS  Google Scholar 

  • Chabannes M, Marazuela E, Borja M (2009) Expression of an Arabidopsis aspartic protease in pelargonium. Acta Hortic 836:271–275

    CAS  Google Scholar 

  • Chandler S, Tanaka Y (2007) Genetic modification in floriculture. Crit Rev Plant Sci 26:169–197

    CAS  Google Scholar 

  • Chandler SF, Brugliera F (2011) Genetic modification in floriculture. Biotechnol Lett 33:207–214

    PubMed  CAS  Google Scholar 

  • Chang C, Kwok SF, Bleecker AB, Meyerowitz EM (1993) Arabidopsis ethylene-response gene ETR1: similarity of product to two-component regulators. Science 262:539–544

    PubMed  CAS  Google Scholar 

  • Chang H, Jones ML, Banowetz GM, Clark DG (2003) Overproduction of cytokinins in petunia flowers transformed with PSAG12-IPT delays corolla senescence and decreases sensitivity to ethylene. Plant Physiol 132:2174–2183

    PubMed  CAS  Google Scholar 

  • Chilton MD, Tepfer DA, Petit A, David C, Casse-Delbart F, Tempe J (1982) Agrobacterium rhizogenes inserts T-DNA into the genome of the host plant root cells. Nature 295:432–434

    CAS  Google Scholar 

  • Choi PS, Kim YD, Choi KM, Chung HJ, Choi DW, Liu JR (2004) Plant regeneration from hairy-root cultures transformed by infection with Agrobacterium rhizogenes in Catharanthus roseus. Plant Cell Rep 22:828–831

    PubMed  CAS  Google Scholar 

  • Christensen B, Müller R (2009a) Improved postharvest life and ethylene tolerance in Kalanchoë blossfeldiana transformed with rol-genes of Agrobacterium rhizogenes. Acta Hortic 847:87–94

    CAS  Google Scholar 

  • Christensen B, Müller R (2009b) Kalanchoë blossfeldiana transformed with rol genes exhibits improved postharvest performance and increased ethylene tolerance. Postharvest Biol Tech 51:399–406

    CAS  Google Scholar 

  • Christensen B, Müller R (2009c) The use of Agrobacterium rhizogenes and its rol-genes for quality improvement in ornamentals. Eur J Hortic Sci 74:275–287

    CAS  Google Scholar 

  • Christensen B, Sriskandarajah S, Jensen E, Lütken H, Müller R (2010) Transformation with rol genes of Agrobacterium rhizogenes as a strategy to breed compact ornamental plants with improved postharvest quality. Acta Hortic 855:69–75

    CAS  Google Scholar 

  • Christensen B, Sriskandarajah S, Müller R (2009a) Biomass distribution in Kalanchoë blossfeldiana transformed with rol-genes of Agrobacterium rhizogenes. Hortscience 44:1233–1237

    Google Scholar 

  • Christensen B, Sriskandarajah S, Müller R (2009b) Transformation of Hibiscus rosa-sinensis L. by Agrobacterium rhizogenes. J Hortic Sci Biotech 84:204–208

    CAS  Google Scholar 

  • Christensen B, Sriskandarajah S, Serek M, Muller R (2008) Transformation of Kalanchoë blossfeldiana with rol-genes is useful in molecular breeding towards compact growth. Plant Cell Rep 27:1485–1495

    PubMed  CAS  Google Scholar 

  • Christey MC, Braun RH (2005) Production of hairy root cultures and transgenic plants by Agrobacterium rhizogenes-mediated transformation. Methods Mol Biol 286:47–60

    PubMed  CAS  Google Scholar 

  • Clark DG, Gubrium EK, Barrett JE, Nell TA, Klee HJ (1999) Root formation in ethylene-insensitive plants. Plant Physiol 121:53–60

    PubMed  CAS  Google Scholar 

  • Clark KL, Larsen PB, Wang X, Chang C (1998) Association of the Arabidopsis CTR1 Raf-like kinase with the ETR1 and ERS ethylene receptors. Proc Natl Acad Sci USA 95:5401–5406

    PubMed  CAS  Google Scholar 

  • Clarke JL, Spetz C, Haugslien S, Xing S, Dees MW, Moe R, Blystad DR (2008) Agrobacterium tumefaciens-mediated transformation of poinsettia, Euphorbia pulcherrima, with virus-derived hairpin RNA constructs confers resistance to Poinsettia mosaic virus. Plant Cell Rep 27:1027–1038

    PubMed  CAS  Google Scholar 

  • Clevenger D, Barrett J, Klee H, Clark D (2004) Factors affecting seed production in transgenic ethylene-insensitive petunia. J Am Soc Hortic Sci 129:401–406

    CAS  Google Scholar 

  • Clifford SC, Runkle ES, Langton FA, Mead A, Foster SA, Pearson S, Heins RD (2004) Height control of poinsettia using photoselective filters. Hortscience 39:383–387

    Google Scholar 

  • Coles JP, Phillips AL, Croker SJ, Garcia-Lepe R, Lewis MJ, Hedden P (1999) Modification of gibberellin production and plant development in Arabidopsis by sense and antisense expression of gibberellin 20-oxidase genes. Plant J 17:547–556

    PubMed  CAS  Google Scholar 

  • Cui M, Takada K, Ma B, Ezura H (2004) Overexpression of a mutated melon ethylene receptor gene Cm-ETR1/H69A confers reduced ethylene sensitivity in a heterologous plant, Nemesia strumosa. Plant Sci 167:253–258

    CAS  Google Scholar 

  • Curtis IS, Ward DA, Thomas SG, Phillips AL, Davey MR, Power JB, Lowe KC, Croker SJ, Lewis MJ, Magness SL, Hedden P (2000) Induction of dwarfism in transgenic Solanum dulcamara by over-expression of a gibberellin 20-oxidase cDNA from pumpkin. Plant J 23:329–338

    PubMed  CAS  Google Scholar 

  • Czarny JC, Grichko VP, Glick BR (2006) Genetic modulation of ethylene biosynthesis and signaling in plants. Biotechnol Adv 24:410–419

    PubMed  CAS  Google Scholar 

  • Dansk Gartneri (2011) Årsberetning 2011/12 Dansk gartneri i tal 1-24

  • De Castro VL, Goes KP, Chiorato SH (2004) Developmental toxicity potential of paclobutrazol in the rat. Int J Environ Health Res 14:371–380

    PubMed  Google Scholar 

  • Dijkstra C, Adams E, Bhattacharya A, Page AF, Anthony P, Kourmpetli S, Power JB, Lowe KC, Thomas SG, Hedden P, Phillips AL, Davey MR (2008) Over-expression of a gibberellin 2-oxidase gene from Phaseolus coccineus L. enhances gibberellin inactivation and induces dwarfism in Solanum species. Plant Cell Rep 27:463–470

    PubMed  CAS  Google Scholar 

  • Eckardt NA (2002) Foolish seedlings and DELLA regulators: the functions of rice SLR1 and Arabidopsis RGL1 in GA signal transduction. Plant Cell 14:1–5

    PubMed  CAS  Google Scholar 

  • Einset JW, Kopperud C (1995) Antisense ethylene genes for Begonia flowers. Acta Hortic 405:190–196

    CAS  Google Scholar 

  • El-Sharkawy I, El Kayal W, Prasath D, Fernandez H, Bouzayen M, Svircev AM, Jayasankar S (2012) Identification and genetic characterization of a gibberellin 2-oxidase gene that controls tree stature and reproductive growth in plum. J Exp Bot 63:1225–1239

    PubMed  CAS  Google Scholar 

  • Eriksson ME, Israelsson M, Olsson O, Moritz T (2000) Increased gibberellin biosynthesis in transgenic trees promotes growth, biomass production and xylem fiber length. Nat Biotechnol 18:784–788

    PubMed  CAS  Google Scholar 

  • European Union (2001) Directive 2001/18/EC of the European Parliament and of the Council of 12 March 2001 on the deliberate release into the environment of genetically modified organisms and repealing Council Directive 90/220/EEC Commission Declaration

  • Fagoaga C, Tadeo FR, Iglesias DJ, Huerta L, Lliso I, Vidal AM, Talon M, Navarro L, Garcia-Martinez JL, Pena L (2007) Engineering of gibberellin levels in citrus by sense and antisense overexpression of a GA 20-oxidase gene modifies plant architecture. J Exp Bot 58:1407–1420

    PubMed  CAS  Google Scholar 

  • Filippini F, Rossi V, Marin O, Trovato M, Costantino P, Downey PM, Lo Schiavo F, Terzi M (1996) A plant oncogene as a phosphatase. Nature 379:499–500

    PubMed  CAS  Google Scholar 

  • Fleet CM, Sun T (2005) A DELLAcate balance: the role of gibberellin in plant morphogenesis. Curr Opin Plant Biol 8:77–85

    PubMed  CAS  Google Scholar 

  • Floradania Marketing (2011) Top 14 listerne over danske kulturer 2010. http://floradania.dk

  • Fridborg I, Kuusk S, Moritz T, Sundberg E (1999) The Arabidopsis dwarf mutant shi exhibits reduced gibberellin responses conferred by overexpression of a new putative zinc finger protein. Plant Cell 11:1019–1032

    PubMed  CAS  Google Scholar 

  • Fridborg I, Kuusk S, Robertson M, Sundberg E (2001) The Arabidopsis protein SHI represses gibberellin responses in Arabidopsis and barley. Plant Physiol 127:937–948

    PubMed  CAS  Google Scholar 

  • Gan S, Amasino RM (1995) Inhibition of leaf senescence by autoregulated production of cytokinin. Science 270:1986–1988

    PubMed  CAS  Google Scholar 

  • Gan S, Amasino RM (1997) Making sense of senescence (molecular genetic regulation and manipulation of leaf senescence). Plant Physiol 113:313–319

    PubMed  CAS  Google Scholar 

  • Gennarelli MC, Hagiwara JC, Tosto D, Álvarez MA, Borja M, Escandón A (2009) Genetic transformation of Calibrachoa excellens via Agrobacterium rhizogenes: Changing morphological traits. J Hortic Sci Biotechnol 84:305–311

    CAS  Google Scholar 

  • Giovannini A, Pecchioni N, Allavena A (1996) Genetic transformation of lisianthus (Eustoma grandiflorum Griseb.) by Agrobacterium rhizogenes. J Genet Breed 50:35–40

    Google Scholar 

  • Giovannini A, Pecchioni N, Rabaglio M, Allavena A (1997) Characterization of ornamental Datura plants transformed by Agrobacterium rhizogenes. In Vitro Cell Dev Biol Plant 33:101–106

    Google Scholar 

  • Gordon SP, Chickarmane VS, Ohno C, Meyerowitz EM (2009) Multiple feedback loops through cytokinin signaling control stem cell number within the Arabidopsis shoot meristem. Proc Natl Acad Sci USA 106:16529–16534

    PubMed  CAS  Google Scholar 

  • Gou J, Ma C, Kadmiel M, Gai Y, Strauss S, Jiang X, Busov V (2011) Tissue-specific expression of Populus C19 GA 2-oxidases differentially regulate above- and below-ground biomass growth through control of bioactive GA concentrations. New Phytol 192:626–639

    PubMed  CAS  Google Scholar 

  • Graebe J (1987) Gibberellin biosynthesis and control. Annu Rev Plant Physiol 38:419

    CAS  Google Scholar 

  • Grøn Plantebeskyttelse ApS (2008) Anbefalede midlertidige retningslinier for anvendelse af følgende bekæmpelsesmidler: Bonzi, Pirouette, Acrobat WG, Dithane NT, Tridex DG, ND Mastana SC, Floramon A, Floramon B, Floramon C, Pomoxon, Fungaflor Smoke og Fungazil TM-100. http://www.gartneriraadgivningen.dk

  • Gubrium E, Clevenger D, Clark D, Barrett J, Nell T (2000) Reproduction and horticultural performance of transgenic ethylene- insensitive Petunias. J Am Soc Hortic Sci 125:277–281

    Google Scholar 

  • Hamant O, Pautot V (2010) Plant development: a TALE story. C R Biol 333:371–381

    PubMed  CAS  Google Scholar 

  • Handa T (1992a) Genetic transformation of Antirrhinum majus L. and inheritance of altered phenotype induced by Ri T-DNA. Plant Sci 81:199–206

    CAS  Google Scholar 

  • Handa T (1992b) Regeneration and characterization of prairie gentian (Eustoma grandiflorum) plants transformed by Agrobacterium rhizogenes. Plant Tissue Cult Lett 9:10–14

    Google Scholar 

  • Hansen G, Larribe M, Vaubert D, Tempe J, Biermann BJ, Montoya AL, Chilton MD, Brevet J (1991) Agrobacterium rhizogenes pRi8196 T-DNA: mapping and DNA sequence of functions involved in mannopine synthesis and hairy root differentiation. Proc Natl Acad Sci USA 88:7763–7767

    PubMed  CAS  Google Scholar 

  • Hay A, Barkoulas M, Tsiantis M (2006) ASYMMETRIC LEAVES1 and auxin activities converge to repress BREVIPEDICELLUS expression and promote leaf development in Arabidopsis. Development 133:3955–3961

    PubMed  CAS  Google Scholar 

  • Hedden P (1997) The oxidases of gibberellin biosynthesis: their function and mechanism. Physiol Plant 101:709

    CAS  Google Scholar 

  • Hedden P (2003) The genes of the green revolution. Trends Genet 19:5–9

    PubMed  CAS  Google Scholar 

  • Hedden P, Kamiya Y (1997) Gibberellin biosynthesis: enzymes, genes and their regulation. Annu Rev Plant Physiol Plant Mol Biol 48:431

    PubMed  CAS  Google Scholar 

  • Hedden P, Phillips AL (2000) Manipulation of hormone biosynthetic genes in transgenic plants. Curr Opin Biotechnol 11:130–137

    PubMed  CAS  Google Scholar 

  • Hirano K, Ueguchi-Tanaka M, Matsuoka M (2008) GID1-mediated gibberellin signaling in plants. Trends Plant Sci 13:192–199

    PubMed  CAS  Google Scholar 

  • Hoshino Y, Mii M (1998) Bialaphos stimulates shoot regeneration from hairy roots of snapdragon (Antirrhinum majus L.) transformed by Agrobacterium rhizogenes. Plant Cell Rep 17:256–261

    CAS  Google Scholar 

  • Hosokawa K, Matsuki R, Oikawa Y, Yamamura S (1997) Genetic transformation of gentian using wild-type Agrobacterium rhizogenes. Plant Cell Tissue Org 51:137–140

    Google Scholar 

  • Høyer L (1997) Investigations of product temperature management during transport of pot plants in controlled temperature trucks. Gartenbauwissenhaft 62:50–55

    Google Scholar 

  • Huang S, Raman AS, Ream JE, Fujiwara H, Cerny RE, Brown SM (1998) Overexpression of 20-oxidase confers a gibberellin-overproduction phenotype in Arabidopsis. Plant Physiol 118:773–781

    PubMed  CAS  Google Scholar 

  • Hvoslef-Eide AK, Einset JW, Fjeld T (1995) Breeding for keeping quality in Christmas begonia (Begonia × cheimantha Everett) with traditional breeding and biotechnology. Acta Hortic 405:197–204

    Google Scholar 

  • Israelsson M, Mellerowicz E, Chono M, Gullberg J, Moritz T (2004) Cloning and overproduction of gibberellin 3-oxidase in hybrid aspen trees. Effects on gibberellin homeostasis and development. Plant Physiol 135:221–230

    PubMed  CAS  Google Scholar 

  • James C (2010) A global overview of biotech (GM) crops: adoption, impact and future prospects. GM crops 1:8–12

    PubMed  Google Scholar 

  • Jouanin L, Guerche P, Pamboukdjian N, Tourneur C, Delbart F, Tourneur J (1987) Structure of T-DNA in plants regenerated from roots transformed by Agrobacterium rhizogenes strain A4. Mol Gen Genet 206:387–392

    CAS  Google Scholar 

  • Kerstetter R, Vollbrecht E, Lowe B, Veit B, Yamaguchi J, Hake S (1994) Sequence analysis and expression patterns divide the maize knotted1-like homeobox genes into two classes. Plant Cell 6:1877–1887

    PubMed  CAS  Google Scholar 

  • Khodakovskaya M, Li Y, Li J, Vankova R, Malbeck J, McAvoy R (2005) Effects of cor15a-IPT gene expression on leaf senescence in transgenic Petunia × hybrida and Dendranthema × grandiflorum. J Exp Bot 56:1165–1175

    PubMed  CAS  Google Scholar 

  • Khodakovskaya M, Vankova R, Malbeck J, Li A, Li Y, McAvoy R (2009) Enhancement of flowering and branching phenotype in chrysanthemum by expression of ipt under the control of a 0.821 kb fragment of the LEACO1 gene promoter. Plant Cell Rep 28:1351–1362

    PubMed  CAS  Google Scholar 

  • Kieber JJ, Rothenberg M, Roman G, Feldmann KA, Ecker JR (1993) CTR1, a negative regulator of the ethylene response pathway in Arabidopsis, encodes a member of the raf family of protein kinases. Cell 72:427–441

    PubMed  CAS  Google Scholar 

  • Komarovska H, Kosuth J, Giovannini A, Smelcerovic A, Zuehlke S, Cellarova E (2010) Effect of the number of rol genes integrations on phenotypic variation in hairy root-derived Hypericum perforatum L. plants. Z Naturforsch C 65:701–712

    PubMed  CAS  Google Scholar 

  • Koornneef M, Elgersma A, Hanhart CJ, van Loenen-Martinet EP, van Rign L, Zeevaart JAD (1985) A gibberellin insensitive mutant of Arabidopsis thaliana. Physiol Plant 65:33–39

    CAS  Google Scholar 

  • Kuusk S, Sohlberg JJ, Magnus Eklund D, Sundberg E (2006) Functionally redundant SHI family genes regulate Arabidopsis gynoecium development in a dose-dependent manner. Plant J 47:99–111

    PubMed  CAS  Google Scholar 

  • Lange T (1998) Molecular biology of gibberellin synthesis. Planta 204:409–419

    PubMed  CAS  Google Scholar 

  • Laura M, Borghi C, Regis C, Casetti A, Allavena A (2009) Overexpression and silencing of KxhKN5 gene in K. × houghtonii. Acta Hortic 836:265–269

    CAS  Google Scholar 

  • Leibfried A, To JP, Busch W, Stehling S, Kehle A, Demar M, Kieber JJ, Lohmann JU (2005) WUSCHEL controls meristem function by direct regulation of cytokinin-inducible response regulators. Nature 438:1172–1175

    PubMed  CAS  Google Scholar 

  • Lemcke K, Schmulling T (1998) Gain of function assays identify non-rol genes from Agrobacterium rhizogenes TL-DNA that alter plant morphogenesis or hormone sensitivity. Plant J 15:423–433

    PubMed  CAS  Google Scholar 

  • Lütken H, Jensen LS, Topp SH, Mibus H, Muller R, Rasmussen SK (2010) Production of compact plants by overexpression of AtSHI in the ornamental Kalanchoë. Plant Biotechnol J 8:211–222

    PubMed  Google Scholar 

  • Lütken H, Laura M, Borghi C, Ørgaard M, Allavena A, Rasmussen SK (2011) Expression of KxhKN4 and KxhKN5 genes in Kalanchoë blossfeldiana ‘Molly’ results in novel compact plant phenotypes: towards a cisgenesis alternative to growth retardants. Plant Cell Rep 30:2267–2279

    PubMed  Google Scholar 

  • Majumdar S, Garai S, Jha S (2011) Genetic transformation of Bacopa monnieri by wild type strains of Agrobacterium rhizogenes stimulates production of bacopa saponins in transformed calli and plants. Plant Cell Rep 30:941–954

    PubMed  CAS  Google Scholar 

  • Mariotti D, Fontana GS, Santini L, Constantino P (1989) Evaluation under field conditions of the morphological alterations (‘hairy root phenotype’) induced on Nicotiana tabacum by different Ri plasmid T-DNA genes. J Genet Breed 43:157–164

    Google Scholar 

  • Mayer JE, Potrykus I (2011) Golden Rice’ and biofortification—their potential to save lives is being hampered by overzealous regulation. Acta Hortic 941:21–34

    Google Scholar 

  • Mibus H, Sriskandarajah S, Serek M (2009) Genetically modified flowering potted plants with reduced ethylene sensitivity. Acta Hortic 847:75–80

    CAS  Google Scholar 

  • Mishiba K, Nishihara M, Abe Y, Nakatsuka T, Kawamura H, Kodama K, Takesawa T, Abe J, Yamamura S (2006) Production of dwarf potted gentian using wild-type Agrobacterium rhizogenes. Plant Biotechnol 23:33–38

    CAS  Google Scholar 

  • Momcilovic I, Grubisic D, Kojic M, Neskovic M (1997) Agrobacterium rhizogenes-mediated transformation and plant regeneration of four Gentiana species. Plant Cell Tissue Org Cult 50:1–6

    Google Scholar 

  • Moriguchi K, Maeda Y, Satou M, Kataoka M, Tanaka N, Yoshida K (2000) Analysis of unique variable region of a plant root inducing plasmid, pRi1724, by the construction of its physical map and library. DNA Res 7:157–163

    PubMed  CAS  Google Scholar 

  • Mukherjee K, Brocchieri L, Burglin TR (2009) A comprehensive classification and evolutionary analysis of plant homeobox genes. Mol Biol Evol 26:2775–2794

    PubMed  CAS  Google Scholar 

  • Mullins MG (1989) Growth regulators in the propagation and genetic improvement of fruit crops. Acta Hortic 239:101–108

    Google Scholar 

  • Müller R (2011) Physiology and genetics of plant quality improvement. Doctoral Dissertation, University of Copenhagen

  • Müller R, Andersen AS, Serek M (1998) Differences in display life of miniature potted roses (Rosa hybrida L.). Sci Hortic 76:59–71

    Google Scholar 

  • Müller R, Lind-Iversen S, Stummann BM, Serek M (2000a) Expression of genes for ethylene biosynthetic enzymes and an ethylene receptor in senescing flowers of miniature roses. J Hortic Sci Biotech 75:12–18

    Google Scholar 

  • Müller R, Owen CA, Xue ZT, Welander M, Stummann BM (2002) Characterization of two CTR like protein kinases in Rosa hybrida and their expression during flower senescence and in response to ethylene. J Exp Bot 53:1223–1225

    PubMed  Google Scholar 

  • Müller R, Sisler EC, Serek M (2000b) Stress induced ethylene production, ethylene binding, and the response to the ethylene action inhibitor 1-MCP in miniature roses. Sci Hortic 83:51–59

    Google Scholar 

  • Müller R, Stummann BM (2005) Genetic control of ethylene biosynthesis, perception and signal transduction related to flower senescence in ornamentals. In: Dris R (ed) Crops—growth, quality and biotechnology. WFL Publisher, Helsinki, pp 1343–1356

  • Müller R, Stummann BM, Andersen AS (2001a) Comparison of postharvest properties of closely related miniature rose cultivars (Rosa hybrida L.). Sci Hortic 91:325–337

    Google Scholar 

  • Müller R, Stummann BM, Sisler EC, Serek M (2001b) Cultivar differences in regulation of ethylene production in miniature rose flowers (Rosa hybrida L.). Gartenbauwissenhaft 1:34–38

    Google Scholar 

  • Nell TA (1992) Taking silver out of the longevity picture. Grower Talks 6:35–38

    Google Scholar 

  • Nishihara M, Nakatsuka T (2011) Genetic engineering of flavonoid pigments to modify flower color in floricultural plants. Biotechnol Lett 33:433–441

    PubMed  CAS  Google Scholar 

  • Norsk Gartnerforbund (2010) Statistikk

  • Oerum JE, Christensen J (2001) Produktionsøkonomiske analyser af mulighederne for en reduceret pesticidanvendelse i dansk gartneri, vol 128, pp 1–81

  • Pellegrineschi A, Damon JP, Valtorta N, Paillard N, Tepfer D (1994) Improvement of ornamental characters and fragrance production in lemon-scented geranium through genetic-transformation by Agrobacterium rhizogenes. Nat Biotechnol 12:64–68

    CAS  Google Scholar 

  • Peng J, Carol P, Richards DE, King KE, Cowling RJ, Murphy GP, Harberd NP (1997) The Arabidopsis GAI gene defines a signaling pathway that negatively regulates gibberellin responses. Genes Dev 11:3194–3205

    PubMed  CAS  Google Scholar 

  • Petty L, Harberd N, Carré I, Thomas B, Jackson S (2003) Expression of the Arabidopsis gai gene under its promoter causes a reduction in plant height in chrysanthemum by attenuation of the gibberellin response. Plant Sci 164:175–182

    CAS  Google Scholar 

  • Petty LM, Thomas B, Jackson SD, Harberd N (2001) Manipulating the gibberellin response to reduce plant height in Chrysanthemum morifolium. Acta Hortic 560:87–90

    CAS  Google Scholar 

  • Porter JR (1991) Host range and implications of plant infection by Agrobacterium rhizogenes. Crit Rev Plant Sci 10:387–421

    Google Scholar 

  • Potera C (2007) Blooming biotech. Nat Biotech 25:963–965

    CAS  Google Scholar 

  • Qiao F, Yang Q, Wang C, Fan Y, Wu X, Zhao L (2007) Modification of plant height via RNAi suppression of OsGA20ox2 gene in rice. Euphytica 158:35–45

    CAS  Google Scholar 

  • Rademacher W (2000) GROWTH RETARDANTS: effects on gibberellin biosynthesis and other metabolic pathways. Annu Rev Plant Physiol Plant Mol Biol 51:501–531

    PubMed  CAS  Google Scholar 

  • Radi A, Lange T, Niki T, Koshioka M, Lange MJ (2006) Ectopic expression of pumpkin gibberellin oxidases alters gibberellin biosynthesis and development of transgenic Arabidopsis plants. Plant Physiol 140:528–536

    PubMed  CAS  Google Scholar 

  • Raffeiner B, Serek M, Winkelmann T (2009) Agrobacterium tumefaciens-mediated transformation of Oncidium and Odontoglossum orchid species with the ethylene receptor mutant gene etr1-1. Plant Cell Tissue Org 98:125–134

    CAS  Google Scholar 

  • Riker AJ, Banfield WM, Wright WH, Keitt GW, Sagen HE (1930) Studies on infectious hairy-root of nursery apple trees. J Agric Res 41:507–540

    Google Scholar 

  • Sakamoto T, Matsuoka M (2004) Generating high-yielding varieties by genetic manipulation of plant architecture. Curr Opin Biotechnol 15:144–147

    PubMed  CAS  Google Scholar 

  • Sakamoto T, Morinaka Y, Ishiyama K, Kobayashi M, Itoh H, Kayano T, Iwahori S, Matsuoka M, Tanaka H (2003) Genetic manipulation of gibberellin metabolism in transgenic rice. Nat Biotechnol 21:909–913

    PubMed  CAS  Google Scholar 

  • Sanikhani M, Mibus H, Stummann BM, Serek M (2008) Kalanchoë blossfeldiana plants expressing the Arabidopsis etr1-1 allele show reduced ethylene sensitivity. Plant Cell Rep 27:729–737

    PubMed  CAS  Google Scholar 

  • Savin KW, Baudinette SC, Graham MW, Michael ZM, Nugent GD, Lu C-Y, Chandler SF, Cornish EC (1995) Antisense ACC oxidase RNA delays carnation petal senescence. Hortscience 30:970–972

    CAS  Google Scholar 

  • Schmulling T, Schell J, Spena A (1988) Single genes from Agrobacterium rhizogenes influence plant development. EMBO J 7:2621–2629

    PubMed  CAS  Google Scholar 

  • Schomburg FM, Bizzell CM, Lee DJ, Zeevaart JA, Amasino RM (2003) Overexpression of a novel class of gibberellin 2-oxidases decreases gibberellin levels and creates dwarf plants. Plant Cell 15:151–163

    PubMed  CAS  Google Scholar 

  • Serek M, Sisler EC (2001) Efficiacy of inhibitors of ethylene binding in improvement of the postharvest characteristics of potted flowering plants. Postharvest Biol Tech 23:161–166

    CAS  Google Scholar 

  • Serek M, Sisler EC, Reid MS (1994) Novel gaseous ethylene binding inhibitor prevents ethylene effects in potted flowering plants. J Am Soc Hortic Sci 119:1230–1233

    CAS  Google Scholar 

  • Serek M, Woltering EJ, Sisler EC, Frello S, Sriskandarajah S (2006) Controlling ethylene responses in flowers at the receptor level. Biotechnol Adv 24:368–381

    PubMed  CAS  Google Scholar 

  • Shani E, Yanai O, Ori N (2006) The role of hormones in shoot apical meristem function. Curr Opin Plant Biol 9:484–489

    PubMed  CAS  Google Scholar 

  • Shaw J, Chen H, Tsai M, Kuom CI, Huangm LC (2002) Extended flower longevity of Petunia hybrida plants transformed with boers, a mutated ERS gene of Brassica oleracea. Mol Breed 9:211–216

    CAS  Google Scholar 

  • Shibuya K, Barry KG, Ciardi JA, Loucas HM, Underwood BA, Nourizadeh S, Ecker JR, Klee HJ, Clark DG (2004) The central role of PhEIN2 in ethylene responses throughout plant development in petunia. Plant Physiol 136:2900–2912

    PubMed  CAS  Google Scholar 

  • Sisler EC, Grichko VP, Serek M (2006) Interaction of ethylene and other compounds with the ethylene receptor: agonists and antagonists. In: Khan NA (ed) Ethylene action in plants. Springer, Heidelberg, pp 1–34

    Google Scholar 

  • Sisler E, Reid M, Yang S (1986) Effect of antagonists of ethylene action on binding of ethylene in cut carnations. Plant Growth Regul 4:213–218

    CAS  Google Scholar 

  • Sisler E, Serek M (1997) Inhibitors of ethylene responses in plants at the receptor level: recent development. Physiol Plant 100:577–582

    CAS  Google Scholar 

  • Sisler E, Serek M (2003) Compounds interaction with the ethylene receptor in plants. Plant Biol 5:473–480

    Google Scholar 

  • Slightom JL, Durand-Tardif M, Jouanin L, Tepfer D (1986) Nucleotide sequence analysis of TL-DNA of Agrobacterium rhizogenes agropine type plasmid. Identification of open reading frames. J Biol Chem 261:108–121

    PubMed  CAS  Google Scholar 

  • Sohlberg JJ, Myrenas M, Kuusk S, Lagercrantz U, Kowalczyk M, Sandberg G, Sundberg E (2006) STY1 regulates auxin homeostasis and affects apical-basal patterning of the Arabidopsis gynoecium. Plant J 47:112–123

    PubMed  CAS  Google Scholar 

  • Spena A, Schmulling T, Koncz C, Schell JS (1987) Independent and synergistic activity of rol A, B and C loci in stimulating abnormal growth in plants. EMBO J 6:3891–3899

    PubMed  CAS  Google Scholar 

  • Sriskandarajah S, Mibus H, Serek M (2007) Transgenic Campanula carpatica plants with reduced ethylene sensitivity. Plant Cell Rep 26:805–813

    PubMed  CAS  Google Scholar 

  • Staldal V, Sohlberg JJ, Eklund DM, Ljung K, Sundberg E (2008) Auxin can act independently of CRC, LUG, SEU, SPT and STY1 in style development but not apical-basal patterning of the Arabidopsis gynoecium. New Phytol 180:798–808

    PubMed  Google Scholar 

  • Stearns JC, Glick BR (2003) Transgenic plants with altered ethylene biosynthesis or perception. Biotechnol Adv 21:193–210

    PubMed  CAS  Google Scholar 

  • Suginuma C, Akihama T (1995) Transformation of gentian with Agrobacterium rhizogenes. Acta Hortic 392:153–160

    CAS  Google Scholar 

  • Sun LY, Touraud G, Charbonnier C, Tepfer D (1991) Modification of phenotype in Belgian endive (Cichorium intybus) through genetic transformation by Agrobacterium rhizogenes: conversion from biennial to annual flowering. Transgenic Res 1:14–22

    CAS  Google Scholar 

  • Sun Y, Christensen B, Liu F, Huiqun W, Renate M (2009) Effects of ethylene and 1-MCP (1-methylcyclopropene) on bud and flower drop in mini Phalaenopsis cultivars. Plant Growth Regul 59:83–91

    CAS  Google Scholar 

  • Sørensen MT, Danielsen V (2006) Effects of the plant growth regulator, chlormequat, on mammalian fertility. Int J Androl 29:129–133

    PubMed  Google Scholar 

  • Tanaka Y, Brugliera F, Kalc G, Senior M, Dyson B, Nakamura N, Katsumoto Y, Chandler S (2010) Flower color modification by engineering of the flavonoid biosynthetic pathway: practical perspectives. Biosci Biotechnol Biochem 74:1760–1769

    PubMed  CAS  Google Scholar 

  • Tanaka Y, Katsumoto Y, Brugliera F, Mason J (2005) Genetic engineering in floriculture. Plant Cell Tissue Org 80:1–24

    CAS  Google Scholar 

  • Tepfer D (1984) Transformation of several species of higher plants by Agrobacterium rhizogenes: sexual transmission of the transformed genotype and phenotype. Cell 37:959–967

    PubMed  CAS  Google Scholar 

  • Tepfer D (1990) Genetic transformation using Agrobacterium rhizogenes. Physiol Plant 79:140–146

    CAS  Google Scholar 

  • Thomas SG, Phillips AL, Hedden P (1999) Molecular cloning and functional expression of gibberellin 2-oxidases, multifunctional enzymes involved in gibberellin deactivation. Proc Natl Acad Sci USA 96:4698–4703

    PubMed  CAS  Google Scholar 

  • Topp SH, Rasmussen S, Sander L (2008) Alcohol induced silencing of gibberellin 20-oxidases in Kalanchoë blossfeldiana. Plant Cell Tissue Org 93:241–248

    CAS  Google Scholar 

  • Trovato M, Maras B, Linhares F, Costantino P (2001) The plant oncogene rolD encodes a functional ornithine cyclodeaminase. Proc Natl Acad Sci USA 98:13449–13453

    PubMed  CAS  Google Scholar 

  • USDA [NASS] (2009) Floriculture crops-2008 summary. Sp Cr 6-1. http://usda.mannlib.cornell.edu/usda/current/FlorCrop/FlorCrop-04-23-2009.pdf

  • US Environmental Protection Agency (1993) EPA RED document on daminozide US Environmental Protection Agency. http://www.epa.gov/pesticides/reregistration/status_page_d.htm, pp 1–166

  • Veen H (1983) Silver thiosulphate: an experimental tool in plant science. Sci Hortic 20:211–224

    CAS  Google Scholar 

  • Watkins CB (2008) Overview of 1-methylcyclopropene trials and uses for edible horticultural crops. Hortscience 43:86–94

    CAS  Google Scholar 

  • Wen CK, Chang C (2002) Arabidopsis RGL1 encodes a negative regulator of gibberellin responses. Plant Cell 14:87–100

    PubMed  CAS  Google Scholar 

  • White FF, Taylor BH, Huffman GA, Gordon MP, Nester EW (1985) Molecular and genetic analysis of the transferred DNA regions of the root-inducing plasmid of Agrobacterium rhizogenes. J Bacteriol 164:33–44

    PubMed  CAS  Google Scholar 

  • Wilkinson JQ, Lanahan MB, Clark DG, Bleecker AB, Chang C, Meyerowitz EM, Klee HJ (1997) A dominant mutant receptor from Arabidopsis confers ethylene insensitivity in heterologous plants. Nat Biotechnol 15:444–447

    PubMed  CAS  Google Scholar 

  • Woltering E, Harkema H (1987) Effect of exposure time and temperature on response of carnation cut flowers to ethylene. Acta Hortic 216:255–266

    Google Scholar 

  • Woltering E, van Doorn W (1988) Role of ethylene in senescence of petals: morphological and taxonomical relationships. J Exp Bot 39:1605–1616

    CAS  Google Scholar 

  • Xia Y, Suzuki H, Borevitz J, Blount J, Guo Z, Patel K, Dixon RA, Lamb C (2004) An extracellular aspartic protease functions in Arabidopsis disease resistance signaling. EMBO J 23:980–988

    PubMed  CAS  Google Scholar 

  • Yamada K, Honma Y, Asahi KI, Sassa T, Hino KI, Tomoyasu S (2001) Differentiation of human acute myeloid leukaemia cells in primary culture in response to cotylenin A, a plant growth regulator. Br J Haematol 114:814–821

    PubMed  CAS  Google Scholar 

  • Zawaski C, Kadmiel M, Ma C, Gai Y, Jiang X, Strauss SH, Busov VB (2011) SHORT INTERNODES-like genes regulate shoot growth and xylem proliferation in Populus. New Phytol 191:678–691

    PubMed  CAS  Google Scholar 

  • Zhu LH, Li XY, Welander M (2008) Overexpression of the Arabidopsis gai gene in apple significantly reduces plant size. Plant Cell Rep 27:289–296

    PubMed  CAS  Google Scholar 

Download references

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henrik Lütken.

Additional information

Communicated by R. Reski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lütken, H., Clarke, J.L. & Müller, R. Genetic engineering and sustainable production of ornamentals: current status and future directions. Plant Cell Rep 31, 1141–1157 (2012). https://doi.org/10.1007/s00299-012-1265-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-012-1265-5

Keywords

Navigation