Skip to main content
Log in

N-Glycosylation engineering of tobacco plants to produce asialoerythropoietin

  • Original Paper
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Erythropoietin (EPO) is a glycoprotein hormone that displays both hematopoietic and tissue-protective functions by binding to two distinct receptors. Recombinant human EPO (rhuEPO) is widely used for the treatment of anemia, but its use for tissue protection is limited because of potentially harmful increases in red blood cell mass when higher doses of rhuEPO are used. Recent studies have shown that asialoerythropoietin (asialo-rhuEPO), a desialylated form of rhuEPO, lacks hematopoietic activity, but retains cytoprotective activity. Currently, a small amount of asialo-rhuEPO is produced by enzymatic desialylation of rhuEPO. The prohibitive cost of rhuEPO, however, is a major limitation of this method. Plants have the ability to synthesize complex N-glycans, but lack enzymatic activities to add sialic acid and β1,4-galactose to N-glycan chains. Plants could be genetically engineered to produce asialo-rhuEPO by introducing human β1,4-galactosyltransferase. The penultimate β1,4-linked galactose residues are important for in vivo biological activity. In this proof of concept study, we show that tobacco plants co-expressing human β1,4-galactosyltransferase and EPO genes accumulated asialo-rhuEPO. Purified asialo-rhuEPO binds to an Erythrina cristagalli lectin column, indicating that its N-glycan chains bear terminal β1,4-galactose residues and that the co-expressed GalT is functionally active. Asialo-rhuEPO interacted with the EPO receptor (EPOR) with similar affinity as rhuEPO, implying that it was properly folded. The strategy described here provides a straightforward way to produce asialo-rhuEPO for research and therapeutic purposes.

Key message

N-glycosylation pathway in tobacco plants could be genetically engineered to produce a tissue-protective cytokine, asialoerythropoietin (a desialylated form of human hormone erythropoietin).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Bakker H, Bardor M, Molthoff JW, Gomord V, Elbers I, Stevens LH, Jordi W, Lommen A, Faye L, Lerouge P, Bosch D (2001) Galactose-extended glycans of antibodies produced by transgenic plants. Proc Natl Acad Sci USA 98:2899–2904

    Article  PubMed  CAS  Google Scholar 

  • Bakker H, Rouwendal GJ, Karnoup AS, Florack DE, Stoopen GM, Helsper JP, van Ree R, van Die I, Bosch D (2006) An antibody produced in tobacco expressing a hybrid beta-1,4-galactosyltransferase is essentially devoid of plant carbohydrate epitopes. Proc Natl Acad Sci USA 103:7577–7582

    Article  PubMed  CAS  Google Scholar 

  • Brines M, Cerami A (2008) Erythropoietin-mediated tissue protection: reducing collateral damage from the primary injury response. J Intern Med 264:405–432

    Article  PubMed  CAS  Google Scholar 

  • Brines M, Grasso G, Fiordaliso F, Sfacteria A, Ghezzi P, Fratelli M, Latini R, Xie QW, Smart J, Su-Rick CJ, Pobre E, Diaz D, Gomez D, Hand C, Coleman T, Cerami A (2004) Erythropoietin mediates tissue protection through an erythropoietin and common beta-subunit heteroreceptor. Proc Natl Acad Sci USA 101:14907–14912

    Article  PubMed  CAS  Google Scholar 

  • Brines M, Patel NSA, Villa P, Brines C, Mennini T, De Paola M, Erbayraktar Z, Erbayraktar S, Sepodes S, Thiemermann C, Ghezzi P, Yamin M, Hand CC, Xie Q, Coleman T, Cerami A (2008) Nonerythropoietic, tissue-protective peptides derived from the tertiary structure of erythropoietin. Proc Natl Acad Sci USA 105:10925–10930

    Article  PubMed  CAS  Google Scholar 

  • Calvillo L, Latini R, Kajstura J, Leri A, Anversa P, Ghezzi P, Salio M, Cerami A, Brines M (2003) Recombinant human erythropoietin protects the myocardium from ischemia–reperfusion injury and promotes beneficial remodeling. Proc Natl Acad Sci USA 100:4802–4806

    Article  PubMed  CAS  Google Scholar 

  • Castilho A, Gattinger P, Grass J, Jez J, Pabst M, Altmann F, Gorfer M, Strasser R, Steinkellner H (2011) N-glycosylation engineering of plants for the biosynthesis of glycoproteins with bisected and branched complex N-glycans. Glycobiology 21:813–823

    Article  PubMed  CAS  Google Scholar 

  • Cheon BY, Kim HJ, Oh KH, Bahn SC, Ahn JH, Choi JW, Ok SH, Bae JM, Shin JS (2004) Overexpression of human erythropoietin (EPO) affects plant morphologies: retarded vegetative growth in tobacco and male sterility in tobacco and Arabidopsis. Transgenic Res 13:541–549

    Article  PubMed  CAS  Google Scholar 

  • Conley AJ, Mohib K, Jevnikar AM, Brandle JE (2009) Plant recombinant erythropoietin attenuates inflammatory kidney cell injury. Plant Biotechnol J 7:183–199

    Article  PubMed  CAS  Google Scholar 

  • Conrad U, Fiedler U (1998) Compartment-specific accumulation of recombinant immunoglobulins in plant cells: an essential tool for antibody production and immunomodulation of physiological functions and pathogen activity. Plant Mol Biol 38:101–109

    Article  PubMed  CAS  Google Scholar 

  • Erbayraktar S, Grasso G, Sfacteria A, Xie QW, Coleman T, Kreilgaard M, Torup L, Sager T, Erbayraktar Z, Gokmen N, Yilmaz O, Ghezzi P, Villa P, Fratelli M, Casagrande S, Leist M, Helboe L, Gerwein J, Christensen S, Geist MA, Pedersen LO, Cerami-Hand C, Wuerth JP, Cerami A, Brines M (2003) Asialoerythropoietin is a nonerythropoietic cytokine with broad neuroprotective activity in vivo. Proc Natl Acad Sci USA 100:6741–6746

    Article  PubMed  CAS  Google Scholar 

  • Fiordaliso F, Chimenti S, Staszewsky L, Bai A, Carlo E, Cuccovillo I, Doni M, Mengozzi M, Tonelli R, Ghezzi P, Coleman T, Brines M, Cerami A, Latini R (2005) A nonerythropoietic derivative of erythropoietin protects the myocardium from ischemia–reperfusion injury. Proc Natl Acad Sci USA 102:2046–2051

    Article  PubMed  CAS  Google Scholar 

  • Fisher JW (2003) Erythropoietin: physiology and pharmacology update. Exp Biol Med (Maywood) 288:1–14

    Google Scholar 

  • Fitchette-Laine A, Gomard V, Cabones M, Michalski J, Saint Macary M, Foucher B, Cavalier B, Hawes C, Lerouge P, Faye L (1997) N-glycan harboring the Lewis a epitope are expressed at the surface of plant cells. Plant J 12:1411–1417

    Article  PubMed  CAS  Google Scholar 

  • Fukuda MN, Sasaki H, Lopez L, Fukuda M (1989) Survival of recombinant erythropoietin in the circulation: the role of carbohydrates. Blood 73:84–89

    PubMed  CAS  Google Scholar 

  • Genc S, Koroglu TF, Genc K (2004) Erythropoietin as a novel neuroprotectant. Restor Neurol Neurosci 22:105–119

    PubMed  CAS  Google Scholar 

  • Gomord V, Faye L (2004) Posttranslational modification of therapeutic proteins in plants. Curr Opin Plant Biol 7:171–181

    Article  PubMed  CAS  Google Scholar 

  • Gong H, Wang W, Kwon TH, Jonassen T, Li C, Ring T, FrøkiAEr J, Nielsen S (2004) EPO and alpha-MSH prevent ischemia/reperfusion-induced down-regulation of AQPs and sodium transporters in rat kidney. Kidney Int 66:683–695

    Article  PubMed  CAS  Google Scholar 

  • Holsters M, de Waele D, Depicker A, Messens E, Van Montagu M, Schell J (1978) Transfection and transformation of Agrobacterium tumefaciens. Mol Gen Genet 163:181–187

    Article  PubMed  CAS  Google Scholar 

  • Itakura I, Tsuruta SN, Kominami J, Sharon N, Kasai K, Hirabayashi J (2007) Systematic comparison of oligosaccharide specificity of Ricinus communis agglutinin I and Erythrina cristagalli lectins: a search by frontal affinity chromatography. J Biochem 142:459–469

    Article  PubMed  CAS  Google Scholar 

  • Jelkmann W (1992) Erythropoietin: structure, control of production, and function. Physiol Rev 72:449–489

    PubMed  CAS  Google Scholar 

  • Kornfeld R, Kornfeld S (1985) Assembly of asparagine-linked oligosaccharides. Annu Rev Biochem 54:631–664

    Article  PubMed  CAS  Google Scholar 

  • Krantz SB, Jacobson LO (1970) Erythropoietin and the regulation of erythropoiesis. University of Chicago Press, Chicago

    Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  PubMed  CAS  Google Scholar 

  • Leist M, Ghezzi P, Grasso G, Bianchi R, Villa P, Fratelli M, Savino C, Bianchi M, Nielsen J, Gerwien J, Kallunki P, Larsen AK, Helboe L, Christensen S, Pedersen LO, Nielsen M, Torup L, Sager T, Sfacteria A, Erbayraktar S, Erbayraktar Z, Gokmen N, Yilmaz O, Cerami-Hand C, Xie QW, Coleman T, Cerami A, Brines M (2004) Derivatives of erythropoietin that are tissue protective but not erythropoietic. Science 305:239–242

    Article  PubMed  CAS  Google Scholar 

  • Lerouge P, Cabanes-Macheteau M, Rayon C, Fischette-Laine AC, Gomord V, Faye L (1998) N-glycoprotein biosynthesis in plants: recent developments and future trends. Plant Mol Biol 38:31–48

    Article  PubMed  CAS  Google Scholar 

  • Ma JK, Drake PM, Christou P (2003) The production of recombinant pharmaceutical proteins in plants. Nat Rev Genet 4:794–805

    Article  PubMed  CAS  Google Scholar 

  • Matsumoto S, Ikura K, Ueda M, Sasaki R (1995) Characterization of a human glycoprotein (erythropoietin) produced in cultured tobacco cells. Plant Mol Biol 27:1163–1172

    Article  PubMed  CAS  Google Scholar 

  • Moon C, Krawczyk M, Ahn D, Ahmet I, Paik D, Lakatta EG, Talan MI (2003) Erythropoietin reduces myocardial infarction and left ventricular functional decline after coronary artery ligation in rats. Proc Natl Acad Sci USA 100:11612–11617

    Article  PubMed  CAS  Google Scholar 

  • Morell AG, Gregoriadis G, Scheinberg IH, Hickman J, Ashwell G (1971) The role of sialic acid in determining the survival of glycoproteins in the circulation. J Biol Chem 246:1461–1467

    PubMed  CAS  Google Scholar 

  • Morishita E, Masuda S, Nagano M, Yasuda Y, Sasaki R (1997) Erythropoietin receptor is expressed in rat hippocampal and cerebral cortical neurons, and erythropoietin prevents in vitro glutamate-induced neuronal death. Neuroscience 76:105–116

    Article  PubMed  CAS  Google Scholar 

  • Musa TA, Hung CY, Darlington DE, Sane DC, Xie JH (2009) Overexpression of human erythropoietin in tobacco does not affect plant fertility or morphology. Plant Biotechnol Rep 3:157–165

    Article  Google Scholar 

  • Pagny S, Cabanes-Macheteau C, Gilkin JW, Leborgne-Castel N, Lerouge P, Boston RS, Faye L, Gomord V (2000) Protein recycling from the Golgi apparatus to the endoplasmic reticulum in plants and its minor contribution to calreticulin retention. Plant Cell 12:739–755

    PubMed  CAS  Google Scholar 

  • Palacpac NQ, Yoshida S, Sakai H, Kimura Y, Fujiyama K, Yoshida T, Seki T (1999) Stable expression of human beta1,4-galactosyltransferase in plant cells modifies N-linked glycosylation patterns. Proc Natl Acad Sci USA 96:4692–4697

    Article  PubMed  CAS  Google Scholar 

  • Parsa CJ, Kim J, Riel RU, Pascal LS, Thompson RB, Petrofski JA, Matsumoto A, Stamler JS, Koch WJ (2004) Cardioprotective effects of erythropoietin in the reperfused ischemic heart: a potential role for cardiac fibroblasts. J Biol Chem 279:20655–20662

    Article  PubMed  CAS  Google Scholar 

  • Pelham HR (1991) Recycling of proteins between the endoplasmic reticulum and Golgi complex. Curr Opin Cell Biol 3:585–591

    Article  PubMed  CAS  Google Scholar 

  • Sasaki H, Bothner B, Dell A, Fukuda M (1987) Carbohydrate structure of erythropoietin expressed in Chinese hamster ovary cells by a human erythropoietin cDNA. J Biol Chem 262:12059–12076

    PubMed  CAS  Google Scholar 

  • Schaewen V, Sturm A, O’Neil J, Chrispeels MJ (1993) Isolation of a mutant Arabidopsis plant that lacks N-acetylglucosaminyl transferase I and is unable to synthesize Golgi-modified complex N-linked glycans. Plant Physiol 102:1109–1118

    Article  Google Scholar 

  • Smith KJ, Bleyer AJ, Little WC, Sane DC (2003) The cardiovascular effects of erythropoietin. Cardiovasc Res 59:538–548

    Article  PubMed  CAS  Google Scholar 

  • Strasser R, Castilho A, Stadlmann J, Kunert R, Quendler H, Gattinger P, Jez J, Rademacher T, Altmann F, Mach L, Steinkellner H (2009) Improved virus neutralization by plant-produced anti-HIV antibodies with a homogeneous beta1,4-galactosylated N-glycan profile. J Biol Chem 284:20479–20485

    Article  PubMed  CAS  Google Scholar 

  • Takeuchi M, Kobata A (1991) Structures and functional roles of the sugar chains of human erythropoietins. Glycobiology 1:337–346

    Article  PubMed  CAS  Google Scholar 

  • Toledo JR, Sanchez O, Segui RM, Garcia G, Montanez M, Zamora PA, Rodriguez MP, Cremata JA (2006) High expression level of recombinant human erythropoietin in the milk of non-transgenic goats. J Biotechnol 123:225–235

    Article  PubMed  CAS  Google Scholar 

  • Wang X, Zhu C, Wang X, Gerwien JG, Schrattenholz A, Sandberg M, Leist M, Blomgren K (2004) The nonerythropoietic asialoerythropoietin protects against neonatal hypoxia–ischemia as potently as erythropoietin. J Neurochem 91:900–910

    Article  PubMed  CAS  Google Scholar 

  • Wasley LC, Timony G, Murtha P, Stoudemire J, Dorner AJ, Caro J (1991) The importance of N- and O-linked oligosaccharides for the biosynthesis and in vitro and in vivo biologic activities of erythropoietin. Blood 77:2624–2632

    PubMed  CAS  Google Scholar 

  • Weise A, Altmann F, Rodriguez-Franco M, Sjoberg ER, Baumer W, Launhardt H, Kietzmann M, Gorr G (2007) High-level expression of secreted complex glycosylate recombinant human erythropoietin in the Physcomitrella ∆-fuc-t ∆-xyl-t mutant. Plant Biotech J 5:389–401

    Article  CAS  Google Scholar 

  • Wiessner C, Allegrini PR, Ekatodramis D, Jewell UR, Stallmach T, Gassmann M (2001) Increased cerebral infarct volumes in polyglobulic mice overexpressing erythropoietin. J Cereb Blood Flow Metab 21:857–864

    Article  PubMed  CAS  Google Scholar 

  • Zeitlin L, Olmsted SS, Moench TR, Co MS, Martinell BJ, Paradkar VM, Russell DR, Queen C, Cone RA, Whaley KJ et al (1998) A humanized monoclonal antibody produced in transgenic plants for immunoprotection of the vagina against genital herpes. Nat Biotechnol 16:1361–1364

    Article  PubMed  CAS  Google Scholar 

  • Zheng Z, Sumi K, Tanaka K, Murai N (1995) The bean seed storage protein β-phaseolin is synthesized, processed, and accumulated in the vacuolar type-II protein bodies of transgenic rice endosperm. Plant Physiol 109:777–786

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Michiko N. Fukuda, Burnham Institute for Medical Research, La Jolla, CA, USA for human GalT cDNA and Dr. Thomas Ding for technical advice for ECA–agarose binding studies. This work was supported by the National Institute of General Medical Sciences grant (SC3GM088084) to JHX and a Startup Fund from Golden LEAF Foundation to BRITE.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiahua Xie.

Additional information

Communicated by B. Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kittur, F.S., Hung, CY., Darlington, D.E. et al. N-Glycosylation engineering of tobacco plants to produce asialoerythropoietin. Plant Cell Rep 31, 1233–1243 (2012). https://doi.org/10.1007/s00299-012-1244-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-012-1244-x

Keywords

Navigation