Skip to main content
Log in

Isolation of rice dwarf mutants with ectopic deposition of phenolic components including lignin in parenchyma cell walls of internodes

  • Original Paper
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Rice internodes must have the proper shape to support high-yielding panicles. The shape of internodes is controlled by various factors involved in their formation, such as developmental patterns, cell division, cell elongation, and cell wall biosynthesis. To understand the regulation of internode development, we screened dwarf mutants to identify those with a phenotype of ectopic deposits of phenolic components in parenchyma cell walls of internodes. We named these mutants ectopic deposition of phenolic components1 (edp1). Two alleles were identified, edp1-1 and edp1-2. Furthermore, these mutants showed disordered cell files in internode parenchyma. These abnormal phenotypes were very similar to that of a previously reported dwarf50 (d50) mutant. Genetic analyses of edp1 mutants revealed that the edp1 loci are distinct from d50. Our results indicate that analyses of edp1 mutants as well as the d50 mutant will be useful for understanding the molecular mechanisms behind ectopic deposition of cell wall phenolic components in internode parenchyma cells and the regulation of internode development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ashikari M, Sasaki A, Ueguchi-Tanaka M, Itoh H, Nishimura A, Swapan D, Ishiyama K, Saito T, Kobayashi M, Khush GS, Kitano H, Matsuoka M (2002) Loss-of-function of a rice gibberellins biosynthetic gene, GA20 oxidase (GA20ox-2), led to the rice ‘Green Revolution’. Breed Sci 52:143–150

    Article  CAS  Google Scholar 

  • Cabrera y Poch HL, Peto CA, Chory J (1993) A mutation in the Arabidopsis DET3 gene uncouples photoregulated leaf development from gene expression and chloroplast biogenesis Plant J 4:671–682

    Google Scholar 

  • Caño-Delgado A, Metzlaff K, Bevan M (2000) The eli1 mutation reveals a link between cell expansion and secondary cell wall formation in Arabidopsis thaliana. Development 127:3395–3405

    PubMed  Google Scholar 

  • Caño-Delgado A, Penfield S, Smith C, Catley M, Bevan M (2003) Reduced cellulose synthesis invokes lignifications and defense response in Arabidopsis thaliana. Plant J 34:351–362

    Article  PubMed  Google Scholar 

  • Clouse SD, Sasse JM (1998) Brassinosteroids: essential regulators of plant growth and development. Annu Rev Plant Physiol Plant Mol Biol 49:427–451

    Article  PubMed  CAS  Google Scholar 

  • Fujioka S, Yokota T (2003) Biosynthesis and metabolism of brassinosteroids. Annu Rev Plant Biol 54:137–164

    Article  PubMed  CAS  Google Scholar 

  • Hong Z, Ueguchi-Tanaka M, Shimizu-Sato S, Inukai Y, Fujioka S, Shimada Y, Takatsuto S, Agetsuma M, Yoshida S, Watanabe Y, Uozu S, Kitano H, Ashikari M, Matsuoka M (2002) Loss-of-function of a rice brassinosteroid biosynthetic enzyme, C-6 oxidase, prevents the organized arrangement and polar elongation of cells in the leaves and stem. Plant J 32:495–508

    Article  PubMed  CAS  Google Scholar 

  • Hong Z, Ueguchi-Tanaka M, Umemura K, Uozu S, Fujioka S, Takatsuto S, Yoshida S, Ashikari M, Kitano H, Matsuoka M (2003) A rice bassinosteroid-deficient mutant, ebisu dwarf (d2), is caused by a loss of function of a new member of cytochrome P450. Plant Cell 15:2900–2910

    Article  PubMed  CAS  Google Scholar 

  • Hong Z, Ueguchi-Tanaka M, Fujioka S, Takatsuto S, Yoshida S, Hasegawa Y, Ashikari M, Kitano H, Matsuoka M (2005) The rice brassinosteroid-deficient dwarf2 mutant, defective in the rice homolog of Arabidopsis DIMINUTO/DWARF1, is rescued by the endogenously accumulated alternative bioactive brassinosteroid, dolichosterone. Plant Cell 17:2243–2254

    Article  PubMed  CAS  Google Scholar 

  • Iiyama K, Wallis AFA (1990) Determination of lignin in herbaceous plants by an improved acetyl bromide procedure. J Sci Food Agric 51:145–161

    Article  CAS  Google Scholar 

  • Iiyama K, Lam TB, Stone BA (1994) Covalent cross-links in the cell wall. Plant Physiol 104:315–320

    PubMed  CAS  Google Scholar 

  • Itoh H, Tatsumi T, Sakamoto T, Otomo K, Toyomasu T, Kitano H, Ashikari M, Ichihara S, Matsuoka M (2004) A rice semi-dwarf gene, Tan-Ginbozu (D35), encodes the gibberellins biosynthesis enzyme, ent-kaurene oxidase. Plant Mol Biol 54:533–547

    Article  PubMed  CAS  Google Scholar 

  • Kitano H, Futsuhara Y (1982) Character expression of induced dwarf mutants in rice II. Morphological and histological observations on the effects of temperature on culm elongation in the dwarf mutant, Fukei No. 71. Jpn J Breed 32:146–154

    Google Scholar 

  • Kuroda K, Inoue Y (1990) Analysis of lignin by pyrolysis-gas chromatography. I. Effect of inorganic substances on guaiacol-derivative yield from soft woods and their lignins. J Anal Appl Pyrolysis 18:59–69

    Article  CAS  Google Scholar 

  • Kuroda K, Suzuki A, Kato M, Imai K (1995) Analysis or rice (Oryza sativa L.) lignin by pyrolysis-gas chromatography. J Anal Appl Pyroylsis 34:1–12

    Article  CAS  Google Scholar 

  • Mandava NB (1988) Plant growth-promoting brassinosteroids. Annu Rev Plant Physiol Plant Mol Biol 39:23–52

    Article  CAS  Google Scholar 

  • Mori M, Nomura T, Ooka H, Ishizaka M, Yokota T, Sugimoto K, Okabe K, Kajiwara H, Satoh K, Yamamoto K, Hirochika H, Kikuchi S (2002) Isolation and characterization of a rice dwarf mutant with a defect in brassinosteroid biosynthesis. Plant Physiol 130:1152–1161

    Article  PubMed  CAS  Google Scholar 

  • Nakamura A, Fujioka S, Sunohara H, Kamiya N, Hong Z, Inukai Y, Miura K, Takatsuto S, Yoshida S, Ueguchi-Tanaka M, Hasegawa Y, Kitano H, Matsuoka M (2006) The role of OsBRI1 and its homologous genes, OsBRL1 and OsBRL3, in rice. Plant Physiol 140:580–590

    Article  PubMed  CAS  Google Scholar 

  • Newman LJ, Perazza DE, Juda L, Campbell MM (2004) Involvement of the R2R3-MYB, AtMYB61, in the ectopic lignifications and dark-photomorphogenic components of the det3 mutant phenotype. Plant J 37:239–250

    Article  PubMed  CAS  Google Scholar 

  • Nishikubo N, Araki T, Kajita S, Kuroda K, Kitano H, Katayama Y (2000) Specific accumulation of polysaccharide-linked hydroxycinnamoyl esters in the cell walls of irregularly shaped and collapsed internode parenchyma cells of the dwarf rice mutant Fukei 71. Plant Cell Physiol 41:776–784

    PubMed  CAS  Google Scholar 

  • Ralph J, Hatfield RD (1991) Pyrolysis-GC-MS characterization of forage materials. J Agric Food Chem 39:1426–1437

    Article  CAS  Google Scholar 

  • Rogers LA, Dubos C, Surman C, Willment J, Cullis IF, Mansfield SD, Campbell MM (2005) Camparison of lignin deposition in three ectopic lignifications mutants. New Phytol 168:123–140

    Article  PubMed  CAS  Google Scholar 

  • Sakamoto T, Miura K, Itoh H, Tatsumi T, Ueguchi-Tanaka M, Ishiyama K, Kobayashi M, Agrawal GK, Takeda S, Abe K, Miyao A, Hirochika H, Kitano H, Ashikari M, Matsuoka M (2004) An overview of gibberellins metabolism enzyme genes and their related mutants in rice. Plant Physiol 134:1642–1653

    Article  PubMed  CAS  Google Scholar 

  • Sasaki A, Ashikari M, Ueguchi-Tanaka M, Itoh H, Nishimura A, Swapan D, Ishiyama K, Saito T, Kobayashi M, Khush GS, Kitano H, Matsuoka M (2002) A mutant gibberellins-synthesis gene in rice. Nature 416:701–702

    Article  PubMed  CAS  Google Scholar 

  • Sato Y, Sentoku N, Miura Y, Hirochika H, Kitano H, Matsuoka M (1999) Loss-of-function mutations in the rice homeobox gene OSH15 affect the architecture of internodes resulting in dwarf plants. EMBO J 18:992–1002

    Article  PubMed  CAS  Google Scholar 

  • Schumacher K, Vafeados D, McCarthy M, Sze H, Wilkins T, Chory J (1999) The Arabidopsis det3 mutant reveals a central role for the vacuolar H(+)-ATPase in plant growth and development. Genes Dev 13:3259–3270

    Article  PubMed  CAS  Google Scholar 

  • Srivastaba LM (1996) Histochemical studies on lignin. Tappi 49:173–183

    Google Scholar 

  • Sunohara H, Miura K, Wu X, Saeda T, Mizuno S, Ashikari M, Matsuoka M, Kitano H (2006) Effects of Ssi1 gene controlling dm-type internode elongation pattern on lodging resistance and panicle characters in rice. Breed Sci 56:261–268

    Article  Google Scholar 

  • Sunohara H, Kawai T, Shimizu-Sato S, Sato Y, Sato K, Kitano H (2009) A dominant mutation of TWISTED DWARF 1 encoding an α-tubulin protein causes severe dwarfism and right helical growth in rice. Genes Genet Syst 84:209–218

    Article  PubMed  CAS  Google Scholar 

  • Tanabe S, Ashikari M, Fujioka S, Takatsuto S, Yoshida S, Yano M, Yoshimura A, Kitano H, Matsuoka M, Fujisawa Y, Kato H, Iwasaki Y (2005) A novel cytochrome P450 is implicated in brassinosteroid biosynthesis via the characterization of a rice dwarf mutant, dwarf11, with reduced seed length. Plant Cell 17:776–790

    Article  PubMed  CAS  Google Scholar 

  • Vogel J (2008) Unique aspects of the grass cell wall. Curr Opin Plant Biol 11:301–307

    Article  PubMed  CAS  Google Scholar 

  • Wu X, Ihara Y, Takabe K, Kitano H (1999) New dm-type dwarf mutants varying in internode elongation patterns are controlled by different mutant genes at the same locus in rice (Oryza sativa L.). Breed Sci 49:147–153

    Google Scholar 

  • Wu X, Saeda T, Takeda K, Kitano H (2000) Dominant gene, Ssi1 expresses semidwarfism by inhibiting the second internode elongation in rice. Breed Sci 50:17–22

    CAS  Google Scholar 

  • Yamamuro C, Ihara Y, Wu X, Noguchi T, Fujioka S, Takatsuto S, Ashikari M, Kitano H, Matsuoka M (2000) Loss of function of a rice brassinosteroid insensitive1 homolog prevents internode elongation and bending of the lamina joint. Plant Cell 12:1591–1605

    Article  PubMed  CAS  Google Scholar 

  • Yokoyama R, Nishitani K (2004) Genomic basis for cell-wall diversity in plants. A comparative approach to gene families in rice and Arabidopsis. Plant Cell Physiol 45:1111–1121

    Article  PubMed  CAS  Google Scholar 

  • Zhong R, Ripperger A, Ye Z-H (2000) Ectopic deposition of lignin in the pith of stems of two Arabidopsis mutants. Plant Physiol 123:59–69

    Article  PubMed  CAS  Google Scholar 

  • Zhong R, Kays S, Schroeder B, Ye Z-H (2002) Mutation of a chitinase-like gene causes ectopic deposition of lignin, aberrant cell shapes, and overproduction of ethylene. Plant Cell 14:165–179

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Hikaru Sato (Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan) for providing the rice mutants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kanna Sato.

Additional information

Communicated by H. Ebinuma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sato, K., Kawamura, A., Obara, T. et al. Isolation of rice dwarf mutants with ectopic deposition of phenolic components including lignin in parenchyma cell walls of internodes. Plant Cell Rep 30, 2195–2205 (2011). https://doi.org/10.1007/s00299-011-1125-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-011-1125-8

Keywords

Navigation