Skip to main content
Log in

Potassium chloride and rare earth elements improve plant growth and increase the frequency of the Agrobacterium tumefaciens-mediated plant transformation

  • Original Paper
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Plant transformation efficiency depends on the ability of the transgene to successfully interact with plant host factors. Our previous work and the work of others showed that manipulation of the activity of host factors allows for increased frequency of transformation. Recently we reported that exposure of tobacco plants to increased concentrations of ammonium nitrate increases the frequency of both homologous recombination and plant transgenesis. Here we tested the influence of KCl and salts of rare earth elements, Ce and La on the efficiency of Agrobacterium-mediated plant transformation. We found that exposure to KCl, CeCl3 and LaCl3 leads to an increase in recombination frequency in Arabidopsis and tobacco. Plants grown in the presence of CeCl3 and LaCl3 had higher biomass, longer roots and greater root number. Analysis of transformation efficiency showed that exposure of tobacco plants to 50 mM KCl resulted in ~6.0-fold increase in the number of regenerated calli and transgenic plants as compared to control plants. Exposure to various concentrations of CeCl3 showed a maximum increase of ~3.0-fold in both the number of calli and transgenic plants. Segregation analysis showed that exposure to KCl and cerium (III) chloride leads to more frequent integrations of the transgene at a single locus. Analysis of transgene intactness showed better preservation of right T-DNA border during transgene integration. Our data suggest that KCl and CeCl3 can be effectively used to improve quantity and quality of transgene integrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Boyko A, Hudson D, Bhomkar P, Kathiria P, Kovalchuk I (2006a) Increase of homologous recombination frequency in vascular tissue of Arabidopsis plants exposed to salt stress. Plant Cell Physiol 47:736–742

    Article  PubMed  CAS  Google Scholar 

  • Boyko A, Zemp F, Filkowski J, Kovalchuk I (2006b) Double-strand break repair in plants is developmentally regulated. Plant Physiol 141:488–497

    Article  PubMed  CAS  Google Scholar 

  • Boyko A, Matsuoka A, Kovalchuk I (2009) High frequency Agrobacterium tumefaciens-mediated plant transformation induced by ammonium nitrate. Plant Cell Rep 28:737–757

    Article  PubMed  CAS  Google Scholar 

  • Boyko A, Blevins T, Yao Y, Golubov A, Bilichak A, Ilnytskyy Y, Hollander J, Meins F Jr, Kovalchuk I (2010a) Transgenerational adaptation of Arabidopsis to stress requires DNA methylation and the function of Dicer-like proteins. PLoS One 5:e9514

    Article  PubMed  Google Scholar 

  • Boyko A, Golubov A, Bilichak A, Kovalchuk I (2010b) Chlorine ions but not sodium ions alter genome stability of Arabidopsis thaliana. Plant Cell Physiol 51(6):1066–1078

    Article  PubMed  CAS  Google Scholar 

  • Brunaud V, Balzergue S, Dubreucq B, Aubourg S, Samson F, Chauvin S, Bechtold N, Cruaud C, DeRose R, Pelletier G, Lepiniec L, Caboche M, Lecharny A (2002) T-DNA integration into the Arabidopsis genome depends on sequences of pre-insertion sites. EMBO Rep 3:1152–1157

    Article  PubMed  CAS  Google Scholar 

  • Cao R, Huang XH, Zhou Q, Cheng XY (2007) Effects of lanthanum(III) on nitrogen metabolism of soybean seedlings under elevated UV-B radiation. J Environ Sci (China) 19:1361–1366

    CAS  Google Scholar 

  • Chen WJ, Tao Y, Gu YH, Zhao GW (2001) Effect of lanthanide chloride on photosynthesis and dry matter accumulation in tobacco seedlings. Biol Trace Elem Res 79:169–176

    Article  PubMed  CAS  Google Scholar 

  • Choi Y-E, Yang D-C, Choi K-T (1998) Induction of somatic embryos by macrosalt stress from mature zygotic embryos of Panax ginseng. Plant Cell, Tissue Cult Organ Cult 52:117–181

    Article  Google Scholar 

  • Chugh A, Khurana P (2002) Gene expression during somatic embryogenesis—recent advances. Curr Sci 83:715–729

    CAS  Google Scholar 

  • Dias JS, Martins MG (1999) Effect of silver nitrate on anther culture embryo production of different Brassica oleracea morphotypes. Sci Hortic 82:299–307

    Article  CAS  Google Scholar 

  • Diatloff E, Smith FW, Asher CJ (2008) Effects of lanthanum and cerium on the growth and mineral nutrition of corn and mungbean. Ann Bot 101:971–982

    Article  PubMed  CAS  Google Scholar 

  • Filkowski J, Kovalchuk O, Kovalchuk I (2004a) Genome stability of vtc1, tt4, and tt5 Arabidopsis thaliana mutants impaired in protection against oxidative stress. Plant J 38:60–69

    Article  PubMed  CAS  Google Scholar 

  • Filkowski J, Kovalchuk O, Kovalchuk I (2004b) Dissimilar mutation and recombination rates in Arabidopsis and tobacco. Plant Science 166:265–272

    Article  CAS  Google Scholar 

  • Fladung M (1999) Gene stability in transgenic aspen (Populus). I. Flanking DNA sequences and T-DNA structure. Mol Gen Genet 260:574–581

    Article  PubMed  CAS  Google Scholar 

  • Forde BG (2002) Local and long-range signaling pathways regulating plant responses to nitrate. Annu Rev Plant Biol 53:203–224

    Article  PubMed  CAS  Google Scholar 

  • Gorbunova VV, Levy AA (1999) How plants make ends meet: DNA double-strand break repair. Trends Plant Sci 4:263–269

    Article  PubMed  Google Scholar 

  • Greer MS, Kovalchuk I, Eudes F (2009) Ammonium nitrate improves direct somatic embryogenesis and biolistic transformation of Triticum aestivum. N Biotechnol 26:44–52

    Article  PubMed  CAS  Google Scholar 

  • Hao H, Ling C, Xiaoqing L, Chao L, Weiqian C, Yun L, Fashui H (2008) Absorption and transfer of light and photoreduction activities of spinach chloroplasts under calcium deficiency: promotion by cerium. Biol Trace Elem Res 122:157–167

    Article  PubMed  Google Scholar 

  • Hasegawa PM, Bressan RA, Zhu JK, Bohnert HJ (2000) Plant cellular and molecular responses to high salinity. Annu Rev Plant Physiol Plant Mol Biol 51:463–499

    Article  PubMed  CAS  Google Scholar 

  • He D-G, Yang Y-M, Scott KJ (1989) The effect of macroelements in the induction of embryogenic callus from immature embryos of wheat (Triticum aestivum L.). Plant Sci 64:251–258

    Article  CAS  Google Scholar 

  • He D-G, Yang Y-M, Scott KJ (1991) Zinc deficiency and the formation of white structures in immature embryo cultures of wheat (Triticum aestivum L.). Plant Cell Tissue Organ Cult 24(1):9–12

    Article  CAS  Google Scholar 

  • Hu X, Ding Z, Chen Y, Wang X, Dai L (2002) Bioaccumulation of lanthanum and cerium and their effects on the growth of wheat (Triticum aestivum L.) seedlings. Chemosphere 48:621–629

    Article  PubMed  CAS  Google Scholar 

  • Huang H, Liu X, Qu C, Liu C, Chen L, Hong F (2008) Influences of calcium deficiency and cerium on the conversion efficiency of light energy of spinach. Biometals 21:553–561

    Article  PubMed  CAS  Google Scholar 

  • Ilnytskyy Y, Boyko A, Kovalchuk I (2004) Luciferase-based transgenic recombination assay is more sensitive than beta-glucoronidase-based. Mutat Res 559:189–197

    PubMed  CAS  Google Scholar 

  • Immonen AST (1996) Influence of media and growth regulators on somatic embryogenesis and plant regeneration for production of primary triticales. Plant Cell Tissue Organ Cult 44(1):45–52

    Article  CAS  Google Scholar 

  • Jiménez JM (2001) Regulation of in vitro somatic embryogenesis with emphasis on the role of endogenous hormones. Revista Brasileira de Fisiologia Vegetal 13(2):196–223

    Article  Google Scholar 

  • Khanna HK, Daggard GE (2003) Agrobacterium tumefaciens-mediated transformation of wheat using a superbinary vector and a polyamine-supplemented regeneration medium. Plant Cell Rep 21(5):429–436

    PubMed  CAS  Google Scholar 

  • Kim SI, Veena, Gelvin SB (2007) Genome-wide analysis of Agrobacterium T-DNA integration sites in the Arabidopsis genome generated under non-selective conditions. Plant J 51:779–791

    Article  PubMed  CAS  Google Scholar 

  • Kothari SL, Agarwal K, Kumar S (2004) Inorganic nutrient manipulation for highly improved in vitro plant regeneration in finger millet—Eleusine coracana (L.) Gaertn. In Vitro Cell Dev Biol - Plant 40:515–519

    Article  CAS  Google Scholar 

  • Kovalchuk I, Kovalchuk O, Hohn B (2000) Genome-wide variation of the somatic mutation frequency in transgenic plants. EMBO J 19:4431–4438

    Article  PubMed  CAS  Google Scholar 

  • Kumar S, Fladung M (2002) Transgene integration in aspen: structures of integration sites and mechanism of T-DNA integration. Plant J 31:543–551

    Article  PubMed  CAS  Google Scholar 

  • Li DD, Shi W, Deng XX (2003) Factors influencing Agrobacterium-mediated embryogenic callus transformation of Valencia sweet orange (Citrus sinensis) containing the pTA29-barnase gene. Tree Physiol 23:1209–1215

    PubMed  CAS  Google Scholar 

  • Liu Y, Stasiak AZ, Masson JY, McIlwraith MJ, Stasiak A, West SC (2004) Conformational changes modulate the activity of human RAD51 protein. J Mol Biol 337:817–827

    Article  PubMed  CAS  Google Scholar 

  • Maës OC, Chibbar RN, Caswell K, Leung N, Kartha KK (1996) Somatic embryogenesis from isolated scutella of wheat: effects of physical, physiological and genetic factors. Plant Sci 121:75–84

    Article  Google Scholar 

  • Malabadi RB, Staden JV (2006) Cold enhanced somatic embryogenesis in Pinus patula is mediated by calcium. S Afr J Bot 72(4):613–618

    Article  CAS  Google Scholar 

  • Meza TJ, Stangeland B, Mercy IS, Skarn M, Nymoen DA, Berg A, Butenko MA, Hakelien AM, Haslekas C, Meza-Zepeda LA, Aalen RB (2002) Analyses of single-copy Arabidopsis T-DNA-transformed lines show that the presence of vector backbone sequences, short inverted repeats and DNA methylation is not sufficient or necessary for the induction of transgene silencing. Nucleic Acids Res 30:4556–4566

    Article  PubMed  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Perl A, Kless H, Blumenthal A, Galili G, Galun E (1992) Improvement of plant regeneration and GUS expression in scutellar wheat calli by optimization of culture conditions and DNA-microprojectile delivery procedures. Mol Gen Genet 235:279–284

    Article  PubMed  CAS  Google Scholar 

  • Racusen RH, Schiavone FM (1990) Positional cues and differential gene expression in somatic embryos of higher plants. Cell Differ Dev 30:159–169

    Article  PubMed  CAS  Google Scholar 

  • Rossi L, Hohn B, Tinland B (1996) Integration of complete transferred DNA units is dependent on the activity of virulence E2 protein of Agrobacterium tumefaciens. Proc Natl Acad Sci USA 93:126–130

    Article  PubMed  CAS  Google Scholar 

  • Sahrawat AK, Becker D, Lütticke S, Lörz H (2003) Genetic improvement of wheat via alien gene transfer, an assessment. Plant Sci 165:1147–1168

    Article  CAS  Google Scholar 

  • Shim KS, Schmutte C, Yoder K, Fishel R (2006) Defining the salt effect on human RAD51 activities. DNA Repair (Amst) 5:718–730

    Article  CAS  Google Scholar 

  • Shrivastav M, De Haro LP, Nickoloff JA (2008) Regulation of DNA double-strand break repair pathway choice. Cell Res 18:134–147

    Article  PubMed  CAS  Google Scholar 

  • Sigurdsson S, Trujillo K, Song B, Stratton S, Sung P (2001) Basis for avid homologous DNA strand exchange by human Rad51 and RPA. J Biol Chem 276:8798–8806

    Article  PubMed  CAS  Google Scholar 

  • Swoboda P, Gal S, Hohn B, Puchta H (1994) Intrachromosomal homologous recombination in whole plants. EMBO J 13:484–489

    PubMed  CAS  Google Scholar 

  • Takumi S, Shimada T (1997) Variation in transformation frequencies among six common wheat cultivars through particle bombardment of scutellar tissues. Genes Genet Syst 72:63–69

    Article  PubMed  CAS  Google Scholar 

  • Tinland B, Schoumacher F, Gloeckler V, Bravo-Angel AM, Hohn B (1995) The Agrobacterium tumefaciens virulence D2 protein is responsible for precise integration of T-DNA into the plant genome. EMBO J 14:3585–3595

    PubMed  CAS  Google Scholar 

  • Tzfira T, Li J, Lacroix B, Citovsky V (2004) Agrobacterium T-DNA integration: molecules and models. Trends Genet 20:375–383

    Article  PubMed  CAS  Google Scholar 

  • van Attikum H, Hooykaas PJ (2003) Genetic requirements for the targeted integration of Agrobacterium T-DNA in Saccharomyces cerevisiae. Nucleic Acids Res 31:826–832

    Article  PubMed  Google Scholar 

  • Weiping S, Fashui H, Zhigang W, Yuzhen Z, Fugen G, Hongoing X, Mingliang Y, Youhong C, Mizhen Z, Jiale S (2003) Effects of cerium on nitrogen metabolism of peach plantlet in vitro. Biol Trace Elem Res 95:259–268

    Article  PubMed  Google Scholar 

  • Windels P, De Buck S, Van Bockstaele E, De Loose M, Depicker A (2003) T-DNA integration in Arabidopsis chromosomes. Presence and origin of filler DNA sequences. Plant Physiol 133:2061–2068

    Article  PubMed  CAS  Google Scholar 

  • Yin S, Ze Y, Liu C, Li N, Zhou M, Duan Y, Hong F (2009) Cerium relieves the inhibition of nitrogen metabolism of spinach caused by magnesium deficiency. Biol Trace Elem Res 132(1–3):247–258

    Article  CAS  Google Scholar 

  • Yuguan Z, Min Z, Luyang L, Zhe J, Chao L, Sitao Y, Yanmei D, Na L, Fashui H (2009) Effects of cerium on key enzymes of carbon assimilation of spinach under magnesium deficiency. Biol Trace Elem Res 131:154–164

    Article  PubMed  Google Scholar 

  • Zhu JK (2000) Genetic analysis of plant salt tolerance using Arabidopsis. Plant Physiol 124:941–948

    Article  PubMed  CAS  Google Scholar 

  • Zhu JK (2002) Salt and drought stress signal transduction in plants. Annu Rev Plant Biol 53:247–273

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Zoë Migicovsky for proofreading the manuscript. The authors acknowledge NSERC Discovery, NSERC Strategic, Alberta Agriculture Research Institute and HFSP grant to I.K.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor Kovalchuk.

Additional information

Communicated by H. Ebinuma.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boyko, A., Matsuoka, A. & Kovalchuk, I. Potassium chloride and rare earth elements improve plant growth and increase the frequency of the Agrobacterium tumefaciens-mediated plant transformation. Plant Cell Rep 30, 505–518 (2011). https://doi.org/10.1007/s00299-010-0960-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-010-0960-3

Keywords

Navigation