Skip to main content
Log in

A comparison of two class 10 pathogenesis-related genes from alfalfa and their activation by multiple stresses and stress-related signaling molecules

  • Original Paper
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

A collection of 29 pathogenesis-related 10 (PR10) genes of Medicago sativa and Medicago truncatula showed that they were almost all obtained from cDNA libraries of tissues undergoing abiotic or biotic stresses. The predicted proteins could be divided into two subclasses, PR10.1 and PR10.2, but in silico predicted models of their three-dimensional structures revealed that they could be further divided based on size of the hydrophobic internal cavity and number of β-bulges. A comparison of the expression of two highly similar M. sativa subclass PR10.1 genes, MsPR10.1A and MsPR10.1B, predicted to have similar sized hydrophobic internal cavities, but a different number of β-bulges revealed differences in their expression patterns. MsPR10.1A was induced faster than MsPR10.1B by ABA, ethylene, and X. campestris pv. alfalfae, but slower than MsPR10.1B by harvesting and wounding. Unlike MsPR10.1A, MsPR10.1B expression was induced in non-harvested tissues following harvesting, but was not induced by heat treatment. Histochemical observations of Nicotiana benthamiana transformed with 657 bp of the MsPR10.1A promoter fused to the β-glucuronidase (GUS) gene showed that GUS expression was wound-inducible in leaves, which was consistent with MsPR10.1A expression in alfalfa leaves. GUS expression in stems and leaves was mostly in vascular tissue. The MsPR10.1A promoter may be valuable in controlling the expression in vascular tissues and disease resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Agrawal GK, Rakwal R, Tamogami S, Yonekura M, Kubo A, Saji H (2002) Chitosan activates defense/stress response(s) in the leaves of Oryza sativa seedlings. Plant Physiol Biochem 40:1061–1069

    Article  CAS  Google Scholar 

  • Allison LA, Kiss GB, Bauer P, Poiret M, Pierre M, Savoure A, Kondorosi E, Kondorosi A (1993) Identification of two alfalfa early nodulin genes with homology to members of the pea Enod12 gene family. Plant Mol Biol 21:1573–5028

    Article  Google Scholar 

  • Bais HP, Vepachedu R, Lawrence CB, Stermitz FR, Vivanco JM (2003) Molecular and biochemical characterization of an enzyme responsible for the formation of hypericin in St John’s wort (Hypericum perforatum L.). J Biol Chem 278:32413–32422

    Article  CAS  PubMed  Google Scholar 

  • Borsics T, Lados M (2002) Dodder infection induces the expression of a pathogenesis-related gene of the family PR-10 in alfalfa. J Exp Bot 53:1831–1832

    Article  CAS  PubMed  Google Scholar 

  • Breda C, Sallaud C, El-Turk J, Buffard D, De Kozak I, Esnault R, Kondorosi A (1996) Defense reaction in Medicago sativa, A gene encoding a class 10 PR protein is expressed in vascular bundles. Mol Plant Microbe Interact 9:713–719

    CAS  PubMed  Google Scholar 

  • Chen GYJ, Jin S, Goodwin PH (2000) An improved method for the isolation of total RNA from Malva pusilla tissues infected with Colletotrichum gloeosporioides. J Phytopathol 148:57–60

    CAS  Google Scholar 

  • Chenna R, Sugawara H, Koike T, Lopez R, Gibson TJ, Higgins DG, Thompson JD (2003) Multiple sequence alignment with the Clustal series of programs. Nucleic Acids Res 31:3497–3500

    Article  CAS  PubMed  Google Scholar 

  • Chinchilla D, Merchan F, Megias M, Kondorosi A, Sousa C, Crespi M (2003) Ankyrin protein kinases, a novel type of plant kinase gene whose expression is induced by osmotic stress in alfalfa. Plant Mol Biol 51:555–566

    Article  CAS  PubMed  Google Scholar 

  • Constabel CP, Brisson N (1995) Stigma- and vascular-specific expression of the PR10a gene of potato, a novel pattern of expression of a pathogenesis-related gene. Mol Plant Microbe Interact 8:104–113

    CAS  Google Scholar 

  • Datla RS, Hammerlindl JK, Panchuk B, Pelcher LE, Keller W (1992) Modified binary plant transformation vectors with the wild-type gene encoding NPTII. Gene 122:383–384

    Article  CAS  PubMed  Google Scholar 

  • Datta SK, Muthukrishnan S (1999) Pathogenesis-related proteins in plants. CRC Press, Washington, DC

    Book  Google Scholar 

  • Davies KM, King GA (1993) Isolation and characterization of a cDNA clone for a harvest-induced asparagine synthetase from Asparagus officinalis L. Plant Physiol 102:1337–1340

    Article  CAS  PubMed  Google Scholar 

  • Dean JD, Goodwin PH, Hsiang T (2002) Comparison of relative RT-PCR and northern blot analyses to measure expression of β-1, 3-glucanase in Nicotiana benthamiana infected with Colletotrichum destructivum. Plant Mol Biol Rep 20:347–356

    Article  CAS  Google Scholar 

  • Do HM, Lee SC, Jung HW, Sohn KH, Hwang BK (2004) Differential expression and in situ localization of a pepper defensin (CADEF1) gene in response to pathogen infection, abiotic elicitors and environmental stresses in Capsicum annuum. Plant Sci 166:1297–1305

    Article  CAS  Google Scholar 

  • Edwards K, Johnstone C, Thompson C (1991) A simple and rapid method for the preparation of plant genomic DNA for PCR analysis. Nucleic Acids Res 19:1349

    Article  CAS  PubMed  Google Scholar 

  • Eisenberg D, Schwarz E, Komarony M, Wall R (1984) Amino acid scale, normalized consensus hydrophobicity scale. J Mol Biol 179:125–142

    Article  CAS  PubMed  Google Scholar 

  • Esnault R, Buffard D, Breda C, Sallaud C, el Turk J, Kondorosi A (1993) Pathological and molecular characterizations of alfalfa interactions with compatible and incompatible bacteria, Xanthomonas campestris pv. alfalfae and Pseudomonas syringae pv. pisi. Mol Plant Microbe Interact 6:655–664

    CAS  PubMed  Google Scholar 

  • Fernandes H, Pasternak O, Bujacz G, Bujacz A, Sikorski M, Jaskolski M (2008) Lupinus luteus pathogenesis-related protein as a reservoir for cytokinin. J Mol Biol 378:1040–1051

    Article  CAS  PubMed  Google Scholar 

  • Fernandes H, Bujacz A, Bujacz G, Jelen F, Jasinski M, Kachlicki P, Otlewski J, Sikorski MM, Jaskolski M (2009) Cytokinin-induced structural adaptability of a Lupinus luteus PR-10 protein. FEBS J 276:1596–1609

    Article  CAS  PubMed  Google Scholar 

  • Ferullo J, Verzina L, Castonguay Y, Allard G, Madeau P, Willemot C, Laberge S (1996) Post-harvest alteration of in vitro translatable mRNA population in alfalfa (Medicago Sativa L.). Crop Sci 36:1011–1016

    Article  Google Scholar 

  • Finkelstein RR, Gampala SSL, Rock CD (2002) Abscisic acid signaling in seeds and seedlings. Plant Cell 14:S15–S45

    CAS  PubMed  Google Scholar 

  • Flores T, Alape-Giron A, Flores-Diaz M, Flores HE (2002) Ocatin, a novel tuber storage protein from the andean tuber crop oca with antibacterial and antifungal activities. Plant Physiol 128:1291–1302

    Article  CAS  PubMed  Google Scholar 

  • Fujimoto Y, Nagata R, Fukasawa H, Yano K, Azuma M, Iida A, Sugimoto S, Shudo K, Hashimoto Y (1998) Purification and cDNA cloning of cytokinin-specific binding protein from mung bean (Vigna radiata). Eur J Biochem 258:794–802

    Article  CAS  PubMed  Google Scholar 

  • Horsch RB, Fry JE, Hoffman NL, Eichholtz D, Rogers SG, Fraley RT (1985) A simple and general-method for transferring genes into plants. Science 227:1229–1231

    Article  CAS  Google Scholar 

  • Iuchi S, Kobayashi M, Taji T, Naramoto M, Seki M, Kato T, Tabata S, Kakubari Y, Yamaguchi-Shinozaki K, Shinozaki K (2001) Regulation of drought tolerance by gene manipulation of 9-cisepoxycarotenoid dioxygenase, a key enzyme in abscisic acid biosynthesis in Arabidopsis. Plant J 27:325–333

    Article  CAS  PubMed  Google Scholar 

  • Jefferson RA (1987) Assaying chimeric genes in plants, the GUS gene fusion system. Plant Mol Biol Rep 5:387–405

    Article  CAS  Google Scholar 

  • Jwa NS, Agrawal GK, Tamogami S, Yonekura M, Han O, Iwahashi H, Rakwal R (2006) Role of defense/stress-related marker genes, proteins and secondary metabolites in defining rice self-defense mechanisms. Plant Physiol Biochem 44:261–273

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Tamura K, Jakobsen IB, Nei M (2001) MEGA 2, molecular evolutionary genetics analysis software. Bioinformatics 17:1244–1245

    Article  CAS  PubMed  Google Scholar 

  • Lee SC, Hwang BK (2003) Identification of the pepper SAR82 gene as a molecular marker for pathogen infection, abiotic elicitors and environmental stresses in Capsicum annuum. Planta 216:387–396

    CAS  PubMed  Google Scholar 

  • Liu JJ, Ekramoddoullah AKM (2006) The family 10 of plant pathogenesis-related proteins, their structure, regulation, and function in response to biotic and abiotic stresses. Physiol Mol Plant Pathol 68:3–13

    Article  CAS  Google Scholar 

  • Liu JJ, Ekramoddoullah AKM, Yu X (2003) Differential expression of multiple PR10 proteins in western white pine following wounding, fungal infection and cold-hardening. Physiol Plant 119:544–553

    Article  CAS  Google Scholar 

  • Liu JJ, Ekramoddoullah AK, Piggott N, Zamani A (2005) Molecular cloning of a pathogen/wound-inducible PR10 promoter from Pinus monticola and characterization in transgenic Arabidopsis plants. Planta 221:159–169

    Article  CAS  PubMed  Google Scholar 

  • Lo SCC, Hipskind JD, Nicholson RL (1999) cDNA cloning of a sorghum pathogenesis-related protein PR-10 and differential expression of defense-related genes following inoculation with Cochliobolus heterostrophus or Colletotrichum sublineolum. Mol Plant Microbe Interact 12:479–489

    Article  CAS  PubMed  Google Scholar 

  • Markovic-Housley Z, Degano M, Lamba D, von Roepenack-Lahaye E, Clemens S, Susani M, Ferreira F, Scheiner O, Breiteneder H (2003) Crystal structure of a hypoallergenic isoform of the major birch pollen allergen Bet v 1 and its likely biological function as a plant steroid carrier. J Mol Biol 325:123–133

    Article  CAS  PubMed  Google Scholar 

  • Matton DP, Brisson N (1989) Cloning, expression and sequence conservation of pathogenesis-related gene transcripts of potato. Mol Plant Microbe Interact 2:325–331

    CAS  PubMed  Google Scholar 

  • McGee JD, Hamer JE, Hodges TK (2001) Characterization of a PR-10 pathogenesis-related gene family induced in rice during infection with Magnaporthe grisea. Mol Plant Microbe Interact 14:877–886

    Article  CAS  PubMed  Google Scholar 

  • Michalska K, Fernandes H, Sikorski M, Jaskolski M (2010) Crystal structure of Hyp-1, a St. John’s wort protein implicated in the biosynthesis of hypericin. J Struct Biol 169:161–171

    Article  CAS  PubMed  Google Scholar 

  • Mogensen JE, Wimmer R, Larsen JN, Spangfort MD, Otzen DE (2002) The major birch allergen, Bet v 1, shows affinity for a broad spectrum of physiological ligands. J Biol Chem 277:23684–23692

    Article  CAS  PubMed  Google Scholar 

  • Park CJ, Kim KJ, Shin R, Park JM, Shin YC, Paek KH (2004) Pathogenesis-related protein 10 isolated from hot pepper functions as a ribonuclease in an antiviral pathway. Plant J 37:186–198

    CAS  PubMed  Google Scholar 

  • Pasternak O, Biesiadka J, Dolot R, Handschuh L, Bujacz G, Sikorski MM, Jaskolski M (2005) Structure of a yellow lupin pathogenesis-related PR-10 protein belonging to novel subclass. Acta Crystallogr Sect D Biol Crystallogr 16:99–107

    Google Scholar 

  • Pay A, Heberle Bors E, Hirt H (1992) An alfalfa cDNA encodes a protein with homology to translationally controlled human tumor protein. Plant Mol Biol 19:501–503

    Article  CAS  PubMed  Google Scholar 

  • Poupard P, Strull D-G, Simoneau P (1998) Two members of the Bet v 1 gene family encoding birch pathogenesis-related proteins display different patterns of root expression and wound-inducibility. Aust J Plant Physiol 25:459–464

    Article  CAS  Google Scholar 

  • Poupard P, Parisi L, Campion C, Ziadi S, Simoneau P (2003) A wound- and ethephon-inducible PR-10 gene subclass from apple is differentially expressed during infection with a compatible and an incompatible race of Venturia inaequalis. Physiol Mol Plant Pathol 62:3–12

    Article  CAS  Google Scholar 

  • Rakwal R, Agrawal GK, Yonekura M (1999) Separation of proteins from stressed rice Oryza sativa L. leaf tissues by two-dimensional polyacrylamide gel electrophoresis, induction of pathogenesis-related and cellular protectant proteins by jasmonic acid, UV irradiation and copper chloride. Electrophoresis 20:3472–3478

    Article  CAS  PubMed  Google Scholar 

  • Reynolds PHS (1999) Inducible gene expression in plants. CAB, Wallingford

    Google Scholar 

  • Robert N, Ferran J, Breda C, Coutos-Thevenot P, Boulay M, Buffard D, Esnault R (2001) Molecular characterization of the incompatible interaction of Vitis vinifera leaves with Pseudomonas syringae pv pisi, expression of genes coding for stilbene synthase and class 10 PR protein. Eur J Plant Pathol 107:249–261

    Article  CAS  Google Scholar 

  • Rodriguez-Llorente I, Perez-Hormaeche J, El Mounadi K, Dary M, Caviedes MA, Cosson V, Kondorosi A, Ratet P, Palomares AJ (2004) From pollen tubes to infection threads, recruitment of Medicago floral pectic genes for symbiosis. Plant J 39:587–598

    Article  CAS  PubMed  Google Scholar 

  • Sikorski MM, Biesiadka J, Kasperska AE, Kopcinska J, Lotocka B, Golinowski W, Legocki AB (1999) Expression of genes encoding PR10 class pathogenesis-related proteins is inhibited in yellow lupine root nodules. Plant Sci 149:125–137

    Article  CAS  Google Scholar 

  • Sneath PHA, Sokal RR (1973) Numerical taxonomy: the principles and practice of numerical taxonomy. W H Freeman & Co, San Francisco, CA

    Google Scholar 

  • Sohn KH, Lee SC, Jung HW, Hong JK, Hwang BK (2006) Expression and functional roles of the pepper pathogen-induced transcription factor RAV1 in bacterial disease resistance, and drought and salt stress tolerance. Plant Mol Biol 61:897–915

    Article  CAS  PubMed  Google Scholar 

  • Somssich IE, Schmelzer E, Bollmann JJ, Hahlbrock K (1986) Rapid activation by fungal elicitor of genes encoding “pathogenesis-related” protein in cultured parsley cells. Proc Natl Acad Sci USA 83:2427–2430

    Article  CAS  PubMed  Google Scholar 

  • Tewari S, Brown SM, Kenyon P, Balcerzak M, Fristensky B (2003) Plant defense multigene families. II. Evolution of coding sequence and differential expression of PR10 genes in Pisum. http://arXivorg/q-bioPE/0310038

  • Thaler JS, Owen B, Higgins VJ (2004) The role of the jasmonate response in plant susceptibility to diverse pathogens with a range of lifestyles. Plant Physiol 135:530–538

    Article  CAS  PubMed  Google Scholar 

  • Van Loon LC, Van Strien EA (1999) The families of pathogenesis-related proteins, their activities, and comparative analysis of PR-1 type proteins. Physiol Mol Plant Pathol 55:85–97

    Google Scholar 

  • Walter MH, Liu JW, Wünn J, Hess D (1996) Bean ribonulease-like pathogenesis-related protein genes Ypr10 display complex patterns of developmental, dark-induced and exogenous-stimulus-dependent expression. Eur J Biochem 239:281–293

    Article  CAS  PubMed  Google Scholar 

  • Wang CS, Huang JC, Hu JH (1999) Characterization of two subclasses of PR-10 transcripts in lily anthers and induction of their genes through separate signal transduction pathways. Plant Mol Biol 40:807–814

    Article  CAS  PubMed  Google Scholar 

  • Warner SA, Scott R, Draper J (1993) Isolation of an asparagus intracellular PR gene (AoPR1) wound-responsive promoter by the inverse polymerase chain reaction and its characterization in transgenic tobacco. Plant J 3:191–201

    Article  CAS  PubMed  Google Scholar 

  • Yasnetskaya EG, Bulgakov VP, Gorbach VI, Shevchenko NM, Fedoreyeva LI, Zhuravlev YuN, Kiselev KV (2003) Ethephon- and jasmonate-elicited pathogenesis-related ribonucleases in cultured ginseng cells. Russ J Plant Physiol 50:492–497

    Article  CAS  Google Scholar 

  • Zhang J (2004) Harvesting inducible gene and promoters in alfalfa. PhD thesis, University of Guelph

Download references

Acknowledgments

Funding for this study was provided by the Natural Sciences and Engineering Research Council of Canada. Xanthomonas campestris pv. alfalfae strain X61 was kindly provided by Dr. Diane Cuppels, Agriculture and Agri-Food Canada, London, ON, Canada. The authors wish to thank Moez Valliani for his technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Larry R. Erickson.

Additional information

Communicated by D. Zaitlin.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1,285 kb)

Supplementary material 2 (DOCX 20 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bahramnejad, B., Goodwin, P.H., Zhang, J. et al. A comparison of two class 10 pathogenesis-related genes from alfalfa and their activation by multiple stresses and stress-related signaling molecules. Plant Cell Rep 29, 1235–1250 (2010). https://doi.org/10.1007/s00299-010-0909-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-010-0909-6

Keywords

Navigation