Skip to main content
Log in

Gene expression changes in response to drought stress in Citrullus colocynthis

  • Biotic and Abiotic Stress
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Citrullus colocynthis (L.) Schrad, closely related to watermelon, is a member of the Cucurbitaceae family. This plant is a drought-tolerant species with a deep root system, widely distributed in the Sahara-Arabian deserts in Africa and the Mediterranean region. cDNA amplified fragment length polymorphism (cDNA-AFLP) was used to study differential gene expression in roots of seedlings in response to a 20% polyethylene glycol-(PEG8000) induced drought stress treatment. Eighteen genes which show similarity to known function genes were confirmed by quantitative relative (RQ) real-time RT-PCR to be differentially regulated. These genes are involved in various abiotic and biotic stress and developmental responses. Dynamic changes with tissue-specific pattern were detected between 0 and 48 h of PEG treatment. In general, the highest induction levels in roots occurred earlier than in shoots, because the highest expression was detected in roots following 4 and 12 h, in shoots following 12 and 48 h of drought. These drought-responsive genes were also affected by the plant hormones abscisic acid (ABA), salicylic acid (SA), or jasmonic acid (JA), indicating an extensive cross-talk between drought and plant hormones. Collectively, these results will be useful to explore the functions of these multiple signal-inducible genes for unveiling the relationship and crosstalk between different signaling pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adie BAT, Pérez-Pérez J, Pérez-Pérez MM, Godoy M, Sánchez-Serrano J-J, Schmelz EA, Solano R (2007) ABA is an essential signal for plant resistance to pathogens affecting JA biosynthesis and the activation of defenses in Arabidopsis. Plant Cell 19:1665–1681

    Article  CAS  PubMed  Google Scholar 

  • Akashi K, Miyake C, Yokota A (2001) Citrulline, a novel compatible solute in drought-tolerance wild watermelon leaves, is an efficient hydroxyl radical scavenger. FEBS Lett 508:438–442

    Article  CAS  PubMed  Google Scholar 

  • Akashi K, Nishimura N, Ishida Y, Yokota A (2004) Potent hydroxyl radical-scavenging activity of drought-induced type-2 metallothionein in wild watermelon. Biochem Biophys Res Commun 323:72–78

    Article  CAS  PubMed  Google Scholar 

  • Anand A, Krichevsky A, Schornack S, Lahaye T, Tzfira T, Tang Y, Citovsky V, Mysore KS (2007) Arabidopsis VIRE2 INTERACTING PROTEIN2 is required for Agrobacterium T-DNA integration in plants. Plant Cell 19:1695–1708

    Article  CAS  PubMed  Google Scholar 

  • Anderson PJ, Badruzsaufari E, Schenk MP, Manners MJ, Desmond JO, Ehlert C, Maclean JD, Ebert RP, Kazan K (2004) Antagonistic interation between abscisic acid and jasmonate-ethylene signaling pathways modulated defense gene expression and disease resistance in Arabidopsis. Plant Cell 16:3460–3479

    Article  CAS  PubMed  Google Scholar 

  • Bachem CWB, van der Hoeven RS, de Bruijn SM, Vreugdenhil D, Zabeau M, Visser RGF (1996) Visualisation of differential gene expression using a novel method of RNA fingerprinting based on AFLP: analysis of gene expression during potato tuber development. Plant J 9:745–753

    Article  CAS  PubMed  Google Scholar 

  • Baisakh N, Subudhi KP, Parami PN (2006) cDNA-AFLP analysis reveals differential gene expression in response to salt stress in a halophyte Spartina alterniflora Loisel. Plant Sci 170:1141–1149

    Article  CAS  Google Scholar 

  • Banzet N, Richaud C, Deveaux Y, Kazmaier M, Gagnon J, Triantaphylidès C (1998) Accumulation of small heat shock proteins, including mitochondrial HSP22, induced by oxidative stress and adaptive response in tomato cells. Plant J 13:519–527

    Article  CAS  PubMed  Google Scholar 

  • Bao YM, Wang JF, Huang J, Zhang HS (2008) Cloning and characterization of three genes encoding Qb-SNARE proteins in rice. Mol Genet Genomics 279:291–301

    Article  CAS  PubMed  Google Scholar 

  • Bari R, Jones JDG (2009) Roles of plant hormones in plant defence responses. Plant Mol Biol 69:473–488

    Article  CAS  PubMed  Google Scholar 

  • Bartels D, Sunkar R (2005) Drought and salt tolerance in plants. Crit Rev Plant Sci 24:23–58

    Article  CAS  Google Scholar 

  • Bolle C (2004) The role of GRAS proteins in plant signal transduction and development. Planta 218:683–692

    Article  CAS  PubMed  Google Scholar 

  • Bovie C, Ongena M, Thonart P, Dommes J (2004) Cloning and expression analysis of cDNAs corresponding to genes activated in cucumber showing systemic acquired resistance after BTH treatment. BMC Plant Biol 4:15–26

    Article  PubMed  Google Scholar 

  • Campbell EJ, Schenk PM, Kazan K, Penninckx IAMA, Anderson JP, Maclean DJ, Cammue BPA, Ebert PR, Manners JM (2003) Pathogen-responsive expression of a putative ATP-binding cassette transporter gene conferring resistance to the diterpenoid sclareol is regulated by multiple defense signaling pathways in Arabidopsis. Plant Physiol 133:1272–1284

    Article  CAS  PubMed  Google Scholar 

  • Cantero A, Barthakur S, Bushart TJ, Chou S, Morgan RO, Fernandez MP, Clark GB, Roux SJ (2006) Expression profiling of the Arabidopsis annexin gene family during germination, de-etiolation and abiotic stress. Plant Physiol Biochem 44:13–24

    Article  CAS  PubMed  Google Scholar 

  • Capron A, Serralbo O, Fülöp K, Frugier F, Parmentier Y, Dong A, Lecureuil A, Guerche P, Kondorosi E, Scheres B, Genschik P (2003a) The Arabidopsis anaphase-promoting complex or cyclosome: molecular and genetic characterization of the APC2 subunit. Plant Cell 15:2370–2382

    Article  CAS  PubMed  Google Scholar 

  • Capron A, Okrész L, Genschik P (2003b) First glance at the plant APC/C, a highly conserved ubiquitin-protein ligase. Trends Plant Sci 8:83–89

    Article  CAS  PubMed  Google Scholar 

  • Collart AM (2003) Global control of gene expression in yeast by the Ccr4-Not complex. Gene 313:1–16

    Article  CAS  PubMed  Google Scholar 

  • Constan D, Patel R, Keegstra K, Jarvis P (2004) An outer envelope membrane component of the plastid protein import apparatus plays an essential role in Arabidopsis. Plant J 38:93–106

    Article  CAS  PubMed  Google Scholar 

  • Czikkel BE, Maxwell DP (2006) NtGRAS1, a novel stress-induced member of the GRAS family in tobacco, localizes to the nucleus. J Plant Physiol 164:1220–1230

    Article  PubMed  Google Scholar 

  • Dahan J, Etienne P, Petitot AS, Houot V, Blein JP, Suty L (2001) Cryptogein affects expression of alpha3, alpha6 and beta1 20S proteasome subunits encoding genes in tobacco. J Exp Bot 52:1947–1958

    Article  CAS  PubMed  Google Scholar 

  • Dane F, Liu J, Zhang C (2006) Phylogeograghy of the bitter apple, Citrullus colocynthis. Genet Resour Crop Evol 54:327–336

    Article  Google Scholar 

  • Desikan R, Last K, Harrett-Williams R, Tagliavia C, Harter K, Hooley R, Hancock JT, Neill SJ (2006) Ethylene-induced stomatal closure in Arabidopsis occurs via AtrbohF-mediated hydrogen peroxide synthesis. Plant J 47:907–916

    Article  CAS  PubMed  Google Scholar 

  • Diefenbach J, Kindl H (2000) The membrane-bound DnaJ protein located at the cytosolic site of glyoxysomes specifically binds the cytosolic isoform 1 of Hsp70 but not other Hsp70 species. Eur J Biochem 267:746–754

    Article  CAS  PubMed  Google Scholar 

  • Eloy BN, Coppens F, Beemster TSG, Hemerly SA, Ferreira PCG (2006) The Arabidopsis anaphase promoting complex (APC) regulation through subunit availability in plant tissues. Cell Cycle 5:1957–1965

    CAS  PubMed  Google Scholar 

  • Fujita M, Fujita Y, Noutoshi Y, Takahashi F, Narusaka Y, Yamaguchi-shinozaki K, Shinozaki K (2006) Crosstalk between abiotic and biotic stress responses: a current view from the points of convergence in the stress signaling networks. Curr Opin Plant Biol 9:436–442

    Article  PubMed  Google Scholar 

  • Gmachl M, Gieffers C, Podtelejnikov AV, Mann M, Peters JM (2000) The RING-H2 finger protein APC11 and the E2 enzyme UBC4 are sufficient to ubiquitinate substrates of the anaphase-promoting complex. Proc Natl Acad Sci USA 97:8973–8978

    Article  CAS  PubMed  Google Scholar 

  • Groemping Y, Reinstein J (2001) Folding properties of the nucleotide exchange factor GrpE from Thermus thermophilus: GrpE is a thermosensor that mediates heat shock response. J Mol Biol 314:167–178

    Article  CAS  PubMed  Google Scholar 

  • Hegedus D, Yu M, Baldwin D, Gruber M, Sharpe A, Parkin I, Whitwill S, Lydiate D (2003) Molecular characterization of Brassica napus NAC domain transcriptional activators induced in response to biotic and abiotic stress. Plant Mol Biol 53:383–397

    Article  CAS  PubMed  Google Scholar 

  • Hemsley PA, Kemp AC, Grierson CS (2005) The TIP GROWTH DEFECTIVE1 S-acyl transferase regulates plant cell growth in Arabidopsis. Plant Cell 17:2554–2563

    Article  CAS  PubMed  Google Scholar 

  • Hirayama T, Shinozaki K (2007) Perception and transduction of abscisic acid signals: keys to the function of the versatile plant hormone ABA. Trends Plant Sci 12:343–351

    Article  CAS  PubMed  Google Scholar 

  • Hirohashi T, Nakai M (2000) Molecular cloning and characterization of maize Toc34, a regulatory component of the protein import machinery of chloroplast. Biochim Biophys Acta 1491:309–314

    CAS  PubMed  Google Scholar 

  • Huang D, Jaradat MR, Wu W, Ambrose SJ, Ross AR, Abrams SR, Cutler AJ (2007) Structural analogs of ABA reveal novel features of ABA perception and signaling in Arabidopsis. Plant J 50:414–428

    Article  CAS  PubMed  Google Scholar 

  • Huang D, Wu W, Abrams SR, Cutler AJ (2008) The relationship of drought-related gene expression in Arabidopsis thaliana to hormonal and environmental factors. J Exp Bot 59:2991–3007

    Article  CAS  PubMed  Google Scholar 

  • Jarvis P, Soll J (2001) Toc, Tic, and chloroplast protein import. Biochim Biophys Acta 1541:64–79

    Article  CAS  PubMed  Google Scholar 

  • Jiang F, Hartung W (2008) Long-distance signalling of abscisic acid (ABA): the factors regulating the intensity of the ABA signal. J Exp Bot 59:37–43

    Article  CAS  PubMed  Google Scholar 

  • Kaplan F, Guy CL (2004) β-Amylase induction and the protective role of maltose during temperature shock. Plant Physiol 135:1674–1684

    Article  CAS  PubMed  Google Scholar 

  • Kaplan F, Guy CL (2005) RNA interference of Arabidopsis beta-amylase8 prevents maltose accumulation upon cold shock and increases sensitivity of PSII photochemical efficiency to freezing stress. Plant J 44:730–743

    Article  CAS  PubMed  Google Scholar 

  • Kawasaki S, Borchert C, Deyholos M, Wang H, Brazille S, Kawai K, Galbraith D, Bohnert JH (2001) Gene expression profiles during the initial phase of salt stress in rice. Plant Cell 13:889–905

    Article  CAS  PubMed  Google Scholar 

  • Kim K-J, Park C-J, Ham B-K, Choi SB, Lee B-J, Paek K-H (2006) Induction of a cytosolic pyruvate kinase 1 gene during the resistance response to Tobacco mosaic virus in Capsicum annuum. Plant Cell Rep 25:359–364

    Article  CAS  PubMed  Google Scholar 

  • Kreps AJ, Wu Y, Chang H, Shu T, Wang X, Harper FJ (2002) Transcriptome changes for Arabidopsis in response to salt, osmotic and cold stress. Plant Physiol 130:2129–2141

    Article  CAS  PubMed  Google Scholar 

  • Kurepa J, Smalle J (2008) Structure, function and regulation of plant proteasomes. Biochimie 90:324–335

    Google Scholar 

  • Lequeu J, Simon-Plas F, Fromentin J, Etienne P, Petitot A, Blein J, Suty L (2005) Proteasome comprising a b1 inducible subunit acts as a negative regulator of NADPH oxidase during elicitation of plant defense reactions. FEBS Lett 579:4879–4886

    Article  CAS  PubMed  Google Scholar 

  • Leyman B, Geelen D, Quintero FJ, Blatt MR (1999) A tobacco syntaxin with a role in hormonal control of guard cell ion channels. Science 283:537–540

    Article  CAS  PubMed  Google Scholar 

  • Leyman B, Geelen D, Blatt MR (2000) Localization and control of expression of Nt-Syr1, a tobacco SNARE protein. Plant J 24:369–381

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Baird WV (2003) The ribosomal small-subunit protein S28 gene from Helianthus annuus (Asteraceae) is down-regulated in response to drought, high salinity, and abscisic acid. Am J Bot 90:526–531

    Article  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Lund AA, Blum PH, Bhattramakki D, Elthon TE (1998) Heat-stress response of maize mitochondria. Plant Physiol 114:1097–1110

    Article  Google Scholar 

  • McSteen P, Zhao Y (2008) Plant hormones and signaling: common themes and new developments. Dev Cell 14:467–473

    Article  CAS  PubMed  Google Scholar 

  • Meng Q, Zhang C, Gai J, Yu D (2007) Molecular cloning, sequence characterization and tissue-specific expression of six NAC-like genes in soybean (Glycine max (L.) Merr.). J Plant Physiol 164:1002–1012

    Article  CAS  PubMed  Google Scholar 

  • Nakashima K, Tran LP, Nguyen DV, Fujita M, Maruyama K, Todaka D, Ito Y, Hayashi N, Shinozaki K, Yamaguchi-Shinozaki K (2007) Functional analysis of a NAC-type transcription factor OsNAC6 involved in abiotic and biotic stress-responsive gene expression in rice. Plant J 51:617–630

    Article  CAS  PubMed  Google Scholar 

  • Nemhauser JL, Hong F, Chory J (2006) Different plant hormones regulate similar processes through largely nonoverlapping transcriptional responses. Cell 126:467–475

    Article  CAS  PubMed  Google Scholar 

  • Ooka H, Satoh K, Doi K, Nagata T, Otomo Y, Murakami K, Matsubara K, Osato N, Kawai J, Carninci P, Hayashizaki Y, Suzuki K, Kojima K, Takahara Y, Yamamoto K, Kikuchi S (2003) Comprehensive analysis of NAC family genes in Oryza sativa and Arabidopsis thaliana. DNA Res 10:239–247

    Article  CAS  PubMed  Google Scholar 

  • Padidam M, Reddy SV, Beachy NR, Fauquet MC (1999) Molecular characterization of a plant mitochondrial chaperone GrpE. Plant Mol Biol 39:871–881

    Article  CAS  PubMed  Google Scholar 

  • Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucl Acids Res 29:2002–2007

    Article  Google Scholar 

  • Pratelli R, Sutter J-U, Blatt MR (2004) A new catch in the SNARE. Trends Plant Sci 9:187–195

    Article  CAS  PubMed  Google Scholar 

  • Reyes D, Rodríguez D, Lorenzo O, Nicolás G, Cañas R, Cantón RF, Canovas MF, Nicolás C (2006) Immunolocalization of FsPK1 correlated this abscisic acid-induced protein kinase with germination arrest in Fagus sylvatica L. seeds. J Exp Bot 57:923–929

    Article  CAS  PubMed  Google Scholar 

  • Robert-Seilaniantz A, Navarro L, Bari R, Jones DGJ (2007) Pathological hormone imbalances. Curr Opin Plant Biol 10:372–379

    Article  CAS  PubMed  Google Scholar 

  • Rodríguez M, Canales E, Borroto JC, Carmona E, López J, Pujol M, Borrás-Hidalgo (2006) Identification of genes induces upon water-deficit stress in a drought-tolerant rice cultivar. J Plant Physiol 163:577–584

    Article  PubMed  Google Scholar 

  • Ryals JA, Neuenschwander UH, Willits MG, Molina A, Steiner H-Y, Hun MD (1996) Systemic acquired resistance. Plant Cell 8:1809–1819

    Article  CAS  PubMed  Google Scholar 

  • Sagi M, Fluhr R (2006) Production of reactive oxygen species by plant NADPH oxidases. Plant Physiol 141:336–340

    Article  CAS  PubMed  Google Scholar 

  • Sakhabutdinova AR, Fatkhutdinova DR, Bezrukova MV, Shakirova FM (2003) Salicylic acid prevents the damaging action of stress factors on wheat plants. Bulg J Plant Physiol 31:4–319

    Google Scholar 

  • Sato S, Kotani H, Nakamura Y, Kaneko T, Asamizu E, Fukami M, Miyajima N, Tabata S (1997) Structural analysis of Arabidopsis thaliana chromosome 5.I. sequence features of the 1.6 Mb regions covered by twenty physically assigned P1 clones. DNA Res 4:215–219

    Article  CAS  PubMed  Google Scholar 

  • Schiefelbein J, Galway M, Masucci J, Ford S (1993) Pollen tube and root-hair tip growth is disrupted in a mutant of Arabidopsis thaliana. Plant Physiol 103:979–985

    Article  CAS  PubMed  Google Scholar 

  • Schulz B, Üner Kolukisaoglu H (2006) Genomics of plant ABC transporters: the alphabet of photosynthetic life forms or just holes in membranes? FEBS Lett 580:1010–1016

  • Seki M, Ishida J, Narusaka M, Fujita M, Nanjo T, Umezawa T, Kamiya A, Nakajima M, Enju A, Sakurai T, Satou M, Akiyama K, Yamaguchi-Shinozaki K, Carninci P, Kawai J, Hayashizaki Y, Shinozaki K (2002) Monitoring the expression pattern of around 7, 000 Arabidopsis genes under ABA treatments using a full-length cDNA microarray. Funct Integr Genomics 2:282–291

    Article  CAS  PubMed  Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K (1997) Gene expression and signal transduction in water-stress response. Plant Physiol 115:327–334

    Article  CAS  PubMed  Google Scholar 

  • Simon-Plas F, Elmayan T, Blein J (2002) The plasma membrane oxidase NtrbohD is responsible for AOS production in elicited tobacco cells. Plant J 31:137–147

    Article  CAS  PubMed  Google Scholar 

  • Singh KB, Foley RC, Oñate-Sánchez L (2002) Transcription factors in plant defense and stress responses. Curr Opin Plant Biol 5:430–436

    Article  CAS  PubMed  Google Scholar 

  • Smart RE, Bingham GE (1974) Rapid estimates of relative water content. Plant Physiol 53:258–260

    Article  PubMed  Google Scholar 

  • Spoel SH, Koornneef A, Claessens SMC, Korzelius JP, Pelt JAV, Mueller MJ, Buchala AJ, Métraux JP, Brown R, Kazan K, Loon LCV, Dong X, Pieterse CMJ (2003) NPR1 modulates cross-talk between salicylate- and jasmonate-dependent defense pathways through a novel function in the cytosol. Plant Cell 15:760–770

    Article  CAS  PubMed  Google Scholar 

  • Stacey GSK, Granger C, Becker MJ (2002) Peptide transport in plants. Trends Plant Sci 7:257–263

    Article  CAS  PubMed  Google Scholar 

  • Stupnikova I, Benamar A, Tolleter D, Grelet J, Borovskii G, Dorne A, Macherel D (2006) Pea seed mitochondria are endowed with a remarkable tolerance to extreme physiological temperatures. Plant Physiol 140:326–335

    Article  CAS  PubMed  Google Scholar 

  • Stuurman J, Jaggi F, Kuhlemeier C (2002) Shoot meristem maintainance is controlled by a GRAS-gene mediated signal from differentiating cells. Genes Dev 16:2213–2218

    Article  CAS  PubMed  Google Scholar 

  • Sun W, Montagu MV, Verbruggen N (2002) Small heat shock proteins and stress tolerance in plants. Biochim Biophys Acta 1577:1–9

    CAS  PubMed  Google Scholar 

  • Swindell WR, Huebner M, Weber AP (2007) Transcriptional profiling of Arabidopsis heat shock proteins and transcription factors reveals extensive overlap between heat and non-heat stress response pathways. BMC Genomics 8:125–139

    Article  PubMed  Google Scholar 

  • Tanaka Y, Nishiyama Y, Murata N (2000) Acclimation of the photosynthetic machinery to high temperature in Chlamydomonas reinhardtii requires synthesis de novo of proteins encoded by the nuclear and chloroplast genomes. Plant Physiol 124:441–450

    Article  CAS  PubMed  Google Scholar 

  • Tanksley SD, McCouch SR (1997) Seed banks and molecular maps: unlocking genetic potential from the wild. Science 277:1063–1066

    Article  CAS  PubMed  Google Scholar 

  • Torres MA, Dangl JL, Jones JDG (2002) Arabidopsis gp91phox homologues AtrbohD and AtrbohF are required for accumulation of reactive oxygen intermediates in the plant defense response. Proc Natl Acad Sci USA 99:517–522

    Article  CAS  PubMed  Google Scholar 

  • Tran LP, Nakashima K, Sakuma Y, Simpson SD, Fujita Y, Maruyama K, Fujita M, Seki M, Shinozaki K, Kazuko Y (2004) Isolation and functional analysis of Arabidopsis stress-inducible NAC transcription factors that bind to a drought-responsive cis-element in the early responsive to dehydration stress. Plant Cell 16:2481–2498

    Article  CAS  PubMed  Google Scholar 

  • Umezawa T, Mizuno K, Fujimura T (2002) Discrimination of genes expressed in response to the ionic or osmotic effect of salt stress in soybean with cDNA-AFLP. Plant Cell Environ 25:1617–1625

    Article  CAS  Google Scholar 

  • Wasternack C (2007) Jasmonates: an update on biosynthesis, signal transduction and action in plant stress response, growth and development. Ann Bot 100:681–697

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Qi M, Mei C (2004) Endogenous salicylic acid protects rice plants from oxidative damage caused by aging as well as biotic and abiotic stress. Plant J 40:909–919

    Article  CAS  PubMed  Google Scholar 

  • Yazaki K (2006) ABC transporters involved in the transport of plant secondary metabolites. FEBS Lett 580:1183–1191

    Article  CAS  PubMed  Google Scholar 

  • Yokota A, Kawasaki S, Iwano M, Nakamura C, Miyake C, Akashi K (2002) Citrulline and DRIP-1 protein (ArgE homologue) in drought tolerance of wild watermelon. Ann Bot 89:825–832

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Davis WJ (1989) Abscisic acid produced in dehydrating roots may enable the plant to measure the water stress status of the soil. Plant Cell Environ 12:73–81

    Article  CAS  Google Scholar 

  • Zhu JK (2001) Cell signaling under salt, water and cold stress. Curr Opin in Plant Biol 4:401–406

    Article  CAS  Google Scholar 

  • Zhu J, Gong Z, Zhang C, Song C-P, Damsz B, Inan G, Koiwa H, Zhu J-K, Hasegawa PM, Bressan RA (2002) OSM1/SYP61: a syntaxin protein in Arabidopsis controls abscisic acid–mediated and non-abscisic acid–mediated responses to abiotic stress. Plant Cell 14:3009–3028

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fenny Dane.

Additional information

Communicated by H. Judelson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Si, Y., Zhang, C., Meng, S. et al. Gene expression changes in response to drought stress in Citrullus colocynthis . Plant Cell Rep 28, 997–1009 (2009). https://doi.org/10.1007/s00299-009-0703-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-009-0703-5

Keywords

Navigation