Skip to main content

Advertisement

Log in

Expression of the cry1EC gene in castor (Ricinus communis L.) confers field resistance to tobacco caterpillar (Spodoptera litura Fabr) and castor semilooper (Achoea janata L.)

  • Genetic Transformation and Hybridization
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Castor (cv. DCS-9) has been transformed through Agrobacterium-mediated and particle gun bombardment methods using appropriate vectors containing the Bt chimeric gene cry1EC driven by enhanced 35S promoter. About 81 and 12 putative transformants were regenerated following selection on hygromycin and kanamycin, respectively. Southern analysis of DNA extracted from T0 plants confirmed integration of the introduced gene in castor genome. The integration and inheritance of the introduced genes was demonstrated up to T4 generation by PCR and Southern analysis. Southern analysis of two events having single and two copies showed the same pattern of integration in the subsequent generations. Insect feeding experiments conducted in the laboratory by releasing neonate larvae of castor semilooper and S. litura on leaf tissues excised from transgenic and control plants showed varying degrees of larval mortality and slow growth in larvae fed on transgenic leaf tissue. Field bioassays against Spodoptera litura and castor semilooper conducted for eight events in T1–T4 generations under net confinement were more informative and events conferring resistance to the two major defoliators were identified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abel CA, Pollan MC (2004) Field resistance of Bacillus thuringiensis Berliner transformed maize to fall armyworm (Lepidoptera: Noctuidae) and southwestern corn borer (Lepidoptera: Crambidae) leaf feeding. J Entomol Sci 39:325–336

    Google Scholar 

  • Ahn YJ, Vang L, McKeon TA, Chen GQ (2007) High-frequency plant regeneration through adventitious shoot formation in castor (Ricinus communis L.). In Vitro Cell Dev Biol Plant 43:9–15

    Article  CAS  Google Scholar 

  • Ashfaq M, Young SY, McNew RW (2000) Development of Spodoptera exigua and Helicoverpa zea (Lepidoptera: Noctuidae) on transgenic cotton containing Cry1Ac insecticidal protein. J Entomol Sci 35:360–372

    Google Scholar 

  • Bohorova N, Frutos R, Royer M, Estanol P, Pacheco M, Rascon Q, Mc Lean S, Hoisington D (2001) Novel synthetic Bacillus thuringiensis cry1B gene and the cry1B-cry1Ab translational fusion confer resistance to southwestern corn borer, sugarcane borer and fall armyworm in transgenic tropical maize. Theor Appl Genet 103:817–826

    Article  CAS  Google Scholar 

  • Chitkowski RL, Turnipseed SG, Sullivan MJ, Bridges WC Jr (2003) Field and laboratory evaluations of transgenic cotton expressing one or two Bacillus thuringiensis var. Kurstaki Berliner proteins for management of noctuid (Lepidoptera) pests. J Econ Entomol 96:755–762

    Article  CAS  PubMed  Google Scholar 

  • de Maagd RA, Kwa MS, Van der Klei H, Yamamoto T, Schipper B, Viak JM (1996) Domain III substitution in Bacillus thuringiensis delta endotoxin cry1A(b) results in superior toxicity for Spodoptera exigua and altered membrane protein recognition. Appl Environ Microbiol 62:1537–1547

    PubMed  Google Scholar 

  • Doyle JJ, Doyle JL (1990) Isolation of plant DNA from fresh tissue. Focus 12:13–15

    Google Scholar 

  • Dutton A, Romeis J, Bigler F (2005) Effects of Bt maize expressing cry1Ab and Bt spray on Spodoptera littoralis. Entomol Exp Appl 114:161–169

    Article  CAS  Google Scholar 

  • FAOSTAT (2007) FAO online http://faostat.fao.org, 2007- http://faostat.fao.org/site/567/DesktopDefault.aspx?PageID=567#ancor. Accessed on 25 February 2009

  • Ferry N, Edwards MG, Gatehouse J, Capell T, Christou P, Gatehouse AMR (2006) Transgenic plants for insect pest control: a forward looking scientific perspective. Transgenic Res 15:13–19

    Article  CAS  PubMed  Google Scholar 

  • Ganesh Kumari K, Ganesan M, Jayabalan N (2008) Somatic embryogenesis and plant regeneration in Ricinus communis. Biol Plant 52:17–25

    Article  Google Scholar 

  • Guo JY, Dong L, Wan FH (2003) Influence of Bt transgenic cotton on larval survival of common cutworm Spodoptera litura. Chin J Biol Cont 19:145–148

    Google Scholar 

  • Hagerty AM, Kilpatrick AL, Turnipseed SG, Sullivan MJ, Bridges WC (2005) Predaceous arthropods and lepidopteran pests on conventional, Bollgard and Bollgard-II cotton under untreated and disrupted conditions. Env Entomol 34:105–114

    Article  Google Scholar 

  • Hassel RL, Shepard BM (2002) Insect populations on Bacillus thuringiensis transgenic sweet corn. J Entomol Sci 37:285–292

    Google Scholar 

  • Hilder VA, Boulter D (1999) Genetic engineering of crop plants for insect resistance-a critical review. Crop Prot 18:177–191

    Article  Google Scholar 

  • Honee G, Vriezen W, Visser B (1990) A translation fusion product of two different insecticidal crystal protein genes of Bacillus thuringiensis exhibits an enlarged insecticidal spectrum. Appl Environ Microbiol 56:823–825

    CAS  PubMed  Google Scholar 

  • James C (2007) ISAAA Briefs 37-2007: Global Status of Commercialized Biotech/GM Crops (http://www.isaaa.org)

  • Lakshminarayana M, Raoof MA (2005) Insect pests and diseases of castor and their management. Directorate of Oilseeds Research, Hyderabad, p 78

    Google Scholar 

  • Lakshminarayana M, Sujatha M (2005) Toxicity of Bacillus thuringiensis var. Kurstaki strains and purified crystal proteins against Spodoptera litura (Fabr.) on castor, Ricinus communis (L.). J Oilseeds Res 22:433–434

    Google Scholar 

  • Lin CH, Chen YY, Tzeng CC, Tsay HS, Chen LJ (2003) Expression of Bacillus thuringiensis Cry 1C gene in plastid confers high insecticidal efficacy against tobacco cutworm, a Spodoptera insect. Bot Bull Acad Sin 44:199–210

    CAS  Google Scholar 

  • Malathi B, Ramesh S, Rao KV, Reddy VD (2006) Agrobacterium-mediated genetic transformation and production of semilooper resistant transgenic castor (Ricinus communis L.). Euphytica 147:441–449

    Article  CAS  Google Scholar 

  • Mc Manus MT, White DWR, Mc Gregor PG (1994) Accumulation of a chymotrypsin-inhibitor in transgenic tobacco can affect the growth of insect pests. Transgenic Res 3:50–58

    Article  CAS  Google Scholar 

  • Mc Manus MT, Burgess EPJ, Philip B, Watson LM, Laing WA, Voicey CR, White DWR (1999) Expression of the soybean (Kunitz) trypsin inhibitor in transgenic tobacco: effects on larval development of Spodoptera litura. Transgenic Res 8:383–395

    Article  CAS  Google Scholar 

  • Mehlo L, Gahakwa D, Nghia PT, Loc NT, Capell T, Gatehouse JA, Gatehouse AMR, Christou P (2005) An alternative strategy for sustainable pest resistance in genetically enhanced crops. Proc Natl Acad Sci USA 102:7812–7816

    Article  CAS  PubMed  Google Scholar 

  • Meissle M, Vojtech E, Poppy GM (2004) Implications for the parasitoid Campoletis sonorensis (Hymenoptera: Ichneumonidae) when developing in Bt maize fed Spodoptera littoralis larvae (Lepidoptera: Noctuidae). Bull OILB/SROP 27:117–123

    Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Ogunniyi DS (2006) Castor oil: A vital industrial raw material. Bioresource Technol 97:1086–1091

    Article  CAS  Google Scholar 

  • Perlak FJ, Deaton RW, Armstrong TA, Fuchs RL, Sims SR, Greenplate JT, Fischhoff DA (1990) Insect resistant cotton plants. Biotechnol 8:939–943

    Article  CAS  Google Scholar 

  • Perlak FJ, Fuchs RL, Dean DA, Mc Pherson SL, Fischoff DA (1991) Modification of the coding sequence enhances plant expression of insect control protein genes. Proc Natl Acad Sci USA 88:3324–3328

    Article  CAS  PubMed  Google Scholar 

  • Sailaja M, Tarakeswari M, Sujatha M (2008) Stable genetic transformation of castor (Ricinus communis L.) via particle gun-mediated gene transfer using embryo axes from mature seeds. Plant Cell Rep 27:1509–1519

    Article  CAS  PubMed  Google Scholar 

  • Shinoyama H, Mochizuki A (2006) Insect resistant transgenic chrysanthemum [Dendranthema x Grandiflorum (ramat.) Kitamura]. Acta Hort 714:177–184

    CAS  Google Scholar 

  • Singh PK, Kumar M, Chaturvedi CP, Yadav D, Tuli R (2004) Development of a hybrid δ-endotoxin and its expression in tobacco and cotton for control of a polyphagous pest Spodoptera litura. Transgenic Res 13:397–410

    Article  CAS  PubMed  Google Scholar 

  • Strizhov N, Keller M, Mathur J, Koncz-Kalman Z, Bosch D, Prudovsky E, Schell J, Sneh B, Koncz C, Zilberstein A (1996) A synthetic Cry 1C gene, encoding a Bacillus thuringiensis δ-endotoxin, confers Spodoptera resistance in alfalfa and tobacco. Proc Natl Acad Sci USA 93:15012–15017

    Article  CAS  PubMed  Google Scholar 

  • Sujatha M, Lakshminarayana M (2005) Susceptibility of castor semilooper, Achaea janata L. to insecticide crystal proteins from Bacillus thuringiensis. Indian J Plant Prot 33:286–287

    Google Scholar 

  • Sujatha M, Reddy TP (1998) Differential cytokinin effects on the stimulation of in vitro shoot proliferation from meristematic explants of castor (Ricinus communis L.). Plant Cell Rep 17:561–566

    Article  CAS  Google Scholar 

  • Sujatha M, Sailaja M (2005) Stable genetic transformation of castor (Ricinus communis L.) via Agrobacterium tumefaciens-mediated gene transfer using embryo axes from mature seeds. Plant Cell Rep 23:803–810

    Article  CAS  PubMed  Google Scholar 

  • Surekha C, Beena MR, Arundhati A, Singh PK, Tuli R, Dutta Gupta A, Kirti PB (2005) Agrobacterium-mediated genetic transformation of pigeon pea (Cajanus cajan (L.) Millsp.) using embryonal segments and development of transgenic plants for resistance against Spodoptera. Plant Sci 169:1074–1080

    Article  CAS  Google Scholar 

  • Tiwari S, Mishra DK, Singh A, Singh PK, Tuli R (2008) Expression of a synthetic cry1EC gene for resistance against Spodoptera litura in transgenic peanut (Arachis hypogaea L.). Plant Cell Rep 27:1017–1025

    Article  CAS  PubMed  Google Scholar 

  • Vander Salm Th, Bosch D, Honee G, Feng L, Munsterman E, Bakker P, Stiekama W, Visser B (1994) Insect resistance of transgenic plants that express modified Bacillus thuringiensis Cry 1A(b) and Cry 1C genes: a resistance management strategy. Plant Mol Biol 26:51–59

    Article  PubMed  Google Scholar 

  • Vojtech E, Meissle M, Poppy GM (2005) Effects of Bt maize on the herbivore Spodoptera littoralis (Lepidoptera: Noctuidae) and the parasitoid Cotesia marginiventris (Hymenoptera: Braconidae). Transgenic Res 14:133–144

    Article  CAS  PubMed  Google Scholar 

  • Wilson FD, Flint HM, Deaton WR, Fischoff DA, Perlak FJ, Armstrong TA, Fuchs RL, Berberich SA, Parks NJ, Stapp BR (1992) Resistance of cotton lines containing a Bacillus thuringiensis toxin to pink bollworm (Lepidoptera: Gelechiidae) and other insects. J Econ Entomol 85:1516–1521

    Google Scholar 

  • Yeh KW, Lin MI, Tuan SJ, Chen YM, Lin CY, Kao SS (1997) Sweet potato (Ipomea batatas) trypsin inhibitors expressed in transgenic tobacco plants confer resistance against Spodoptera litura. Plant Cell Rep 16:696–699

    Article  CAS  Google Scholar 

  • Yu Y, Kang XX, Lu YH, Liang JY, Wang H, Wu JY, Yang YZ (2004) Effects of transgenic Bt cotton on the increase in population of Spodoptera litura Fabricius. Jiangsu J Agric Sci 20:169–172

    Google Scholar 

  • Zhang GF, Wan FH, Liu WX, Guo JY (2006) Early instar response to plant-delivered Bt-toxin in a herbivore (Spodoptera litura) and a predator (Propylaea japonica). Crop Prot 25:527–533

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Dr. N. Seetharama, Director, NRCS, Hyderabad, India for providing field facilities for raising the transgenic castor crop and the Project Director, Directorate of Oilseeds Research for providing all the facilities for carrying out the work. The authors thank D. Lakshmi, D. Subhamani and P. Kanaka Mahalakshmi for their excellent technical help. The financial support from Andhra Pradesh-Netherlands Biotechnology Programme is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Sujatha.

Additional information

Communicated by R. Rose.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sujatha, M., Lakshminarayana, M., Tarakeswari, M. et al. Expression of the cry1EC gene in castor (Ricinus communis L.) confers field resistance to tobacco caterpillar (Spodoptera litura Fabr) and castor semilooper (Achoea janata L.). Plant Cell Rep 28, 935–946 (2009). https://doi.org/10.1007/s00299-009-0699-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-009-0699-x

Keywords

Navigation