Skip to main content
Log in

A chalcone synthase-like gene is highly expressed in the tapetum of both wheat (Triticum aestivum L.) and triticale (× Triticosecale Wittmack)

  • Cell Biology and Morphogenesis
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

A novel anther-specific chalcone synthase-like gene, TaCHSL1, was isolated and characterized. The TaCHSL1 transcript was detected only within the tapetum during the “free” and early vacuolated microspore stages in both wheat and triticale. Sequence analysis indicated that the 41.8 kDa TaCHSL1 deduced protein belongs to a small distinct group of type III polyketide synthases that includes angiosperm and gymnosperm orthologs shown to be anther-specific. TaCHSL1 sequence characteristics and conservation, as well as its restricted expression pattern, point to a distinct and important biochemical role in developing anthers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ageez A, Kazama Y, Sugiyama R, Kawano S (2005) Male-fertility genes expressed in male flower buds of Silene latifolia include homologs of anther-specific genes. Genes Genet Syst 80:403–413

    Article  PubMed  CAS  Google Scholar 

  • Atanassov I, Russinova E, Antonov L, Atanassov A (1998) Expression of an anther-specific chalcone synthase-like gene is correlated with uninucleate microspore development in Nicotiana sylvestris. Plant Mol Biol 38:1169–1178

    Article  PubMed  CAS  Google Scholar 

  • Austin MB, Noel JP (2003) The chalcone synthase superfamily of type III polyketide synthases. Nat Prod Rep 20:79–110

    Article  PubMed  CAS  Google Scholar 

  • Austin MB, Noel JP (2007) Mechanisms of type III polyketide synthase functional diversity: from ‘steric modulation’ to the ‘reaction partitioning model’. In: ACS Symposium Series. American Chemical Society, Washington DC USA 955:185–197

  • Austin MB, Bowman ME, Ferrer J-L, Schröder J, Noel JP (2004) An aldol switch discovered in stilbene synthases mediates cyclization specificity of type III polyketide synthases. Chem Biol 11:1179–1194

    Article  PubMed  CAS  Google Scholar 

  • Bhandari NN, Khosla R (1982) Development and histochemistry of anther in triticale cv Tri-1. Some new aspects in early ontogeny. Phytomorphology 32:18–27

    Google Scholar 

  • Coberly LC, Rausher MD (2003) Analysis of a chalcone synthase mutant in Ipomoea purpurea reveals a novel function for flavonoids: amelioration of heat stress. Mol Ecol 12:1113–1124

    Article  PubMed  CAS  Google Scholar 

  • Crossley SJ, Greenland AJ, Dickinson HG (1995) The characterisation of tapetum-specific cDNAs isolated from a Lilium henryi L. meiocyte subtractive cDNA library. Planta 196:523–529

    Article  PubMed  CAS  Google Scholar 

  • Ding Z-J, Wu X-H, Wang T (2002) The rice tapetum-specific gene RA39 encodes a type I ribosome-inactivating protein. Sex Plant Reprod 15:205–212

    Article  CAS  Google Scholar 

  • Doyle JJ, Dickson EE (1987) Preservation of plant samples for DNA restriction endonuclease analysis. Taxon 36:715–772

    Article  Google Scholar 

  • Foster E, Gleddie S, Robert LS (2001) Tapetal gene expression reflects the complex role of the tapetum in pollen development. Recent Res Dev Plant Physiol 2:219–239

    CAS  Google Scholar 

  • Foster E, Schneiderman D, Cloutier M, Gleddie S, Robert LS (2002) Modifying the pollen coat protein composition in Brassica. Plant J 31:477–486

    Article  PubMed  CAS  Google Scholar 

  • Hihara Y, Hara C, Uchimiya H (1996) Isolation and characterization of two cDNA clones for mRNAs that are abundantly expressed in immature anthers of rice (Oryza sativa L.). Plant Mol Biol 30:1181–1193

    Article  PubMed  CAS  Google Scholar 

  • Hsieh K, Huang AHC (2007) Tapetosomes in Brassica tapetum accumulate endoplasmic reticulum-derived flavonoids and alkanes for delivery to the pollen surface. Plant Cell 19:582–596

    Article  PubMed  CAS  Google Scholar 

  • Hsu YF, Tzeng JD, Liu MC, Yei FL, Chung MC, Wang CS (2007) Identification of anther-specific/predominant genes regulated by gibberellin during development of lily anthers. J Plant Physiol 165:553–563

    Article  PubMed  CAS  Google Scholar 

  • Huang J-C, Chang F-C, Wang C-S (1997) Characterization of a lily tapetal transcript shares sequence similarity with a class of intracellular pathogenesis-related (IPR) proteins. Plant Mol Biol 34:681–686

    Article  PubMed  CAS  Google Scholar 

  • Huysmans S, El-Ghazaly G, Smets E (1998) Orbicules in angiosperms: morphology, function, distribution, and relation with tapetum types. Bot Rev 64:240–272

    Article  Google Scholar 

  • Jeon JS, Chung YY, Lee S, Yi GH, Oh BG, An G (1999) Isolation and characterization of an anther-specific gene, RA8, from rice (Oryza sativa L.). Plant Mol Biol 39:35–44

    Article  PubMed  CAS  Google Scholar 

  • Jez JM, Austin MB, Ferrer J-L, Bowman ME, Schröder J, Noel JP (2000) Structural control of polyketide formation in plant-specific polyketide synthases. Chem Biol 7:919–930

    Article  PubMed  CAS  Google Scholar 

  • Koonjul PK, Minhas JS, Nunes C, Sheoran IS, Saini HS (2005) Selective transcriptional down-regulation of anther invertases precedes the failure of pollen development in water-stressed wheat. J Exp Bot 56:179–190

    PubMed  CAS  Google Scholar 

  • Lalonde S, Morse D, Saini HS (1997) Expression of a wheat ADP-glucose pyrophosphorylase gene during development of normal and water-stress-affected anthers. Plant Mol Biol 34:445–453

    Article  PubMed  CAS  Google Scholar 

  • Lanz T, Tropf S, Marner F-J, Schröder J, Schröder G (1991) The role of cysteines in polyketide synthases. Site-directed mutagenesis of resveratrol and chalcone synthases, two key enzymes in different plant-specific pathways. J Biol Chem 266:9971–9976

    PubMed  CAS  Google Scholar 

  • Lauga B, Charbonnel-Campaa L, Combes D (2000) Characterization of MZm3-3, a Zea mays tapetum-specific transcript. Plant Sci 157:65–75

    Article  PubMed  CAS  Google Scholar 

  • Li N, Zhang D-S, Liu H-S, Yin C-S, Li X, Liang W, Yuan Z, Xu B, Chu H-W, Wang J, Wen T-Q, Huang H, Luo D, Ma H, Zhang D-B (2006) The rice tapetum degeneration retardation gene is required for tapetum degradation and anther development. Plant Cell 18:2999–3014

    Article  PubMed  CAS  Google Scholar 

  • Lunau K (2000) The ecology and evolution of visual pollen signals. Plant Syst Evol 222:89–111

    Article  Google Scholar 

  • Luo H, Lee J-Y, Hu Q, Nelson-Vasilchik K, Eitas TK, Lickwar C, Kausch AP, Chandlee JM, Hodges TK (2006) RTS, a rice anther-specific gene is required for male fertility and its promoter sequence directs tissue-specific gene expression in different plant species. Plant Mol Biol 62:397–408

    Article  PubMed  CAS  Google Scholar 

  • Mizelle MB, Sethi R, Ashton ME, Jensen WA (1989) Development of the pollen grain and tapetum of wheat (Triticum aestivum) in untreated plants and plants treated with chemical hybridizing agent RH0007. Sex Plant Reprod 2:231–253

    Article  Google Scholar 

  • Oettler G (2005) The fortune of a botanical curiosity—Triticale: past, present and future. J Agric Sci 143:329–346

    Article  Google Scholar 

  • Pacini E, Hesse M (2005) Pollenkitt—its composition, forms and functions. Flora 200:399–415

    Google Scholar 

  • Pacini E, Franchi GG, Hesse M (1985) The tapetum: its form, function and possible phylogeny in Embryophyta. Plant Syst Evol 149:155–185

    Article  Google Scholar 

  • Piffanelli P, Ross JHE, Murphy DJ (1998) Biogenesis and function of the lipidic structures of pollen grains. Sex Plant Reprod 11:65–80

    Article  CAS  Google Scholar 

  • Qu L-J, Zhang Y, Xie M, Gu H, Chen Z-L (1997) A chalcone synthase-like cDNA from rice anther. Sex Plant Reprod 10:181–183

    Article  CAS  Google Scholar 

  • Ruzin SE (1999) Plant microtechnique and microscopy. Oxford University Press, Oxford

    Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Schrauwen JAM, Mettenmeyer T, Croes AF, Wullems GJ (1996) Tapetum-specific genes: what role do they play in male gametophyte development? Acta Bot Neerl 45:1–15

    CAS  Google Scholar 

  • Shen JB, Hsu FC (1992) Brassica anther-specific genes: characterization and in situ localization of expression. Mol Gen Genet 234:379–389

    Article  PubMed  CAS  Google Scholar 

  • Stockmeyer K, Kempken F (2006) Engineered male sterility in plant hybrid breeding. Prog Bot 67:178–187

    Article  CAS  Google Scholar 

  • Taylor LP, Grotewold E (2005) Flavonoids as developmental regulators. Curr Opin Plant Biol 8:317–323

    Article  PubMed  CAS  Google Scholar 

  • Tsuchiya T, Toriyama K, Ejiri S, Hinata K (1994) Molecular characterization of rice genes specifically expressed in the anther tapetum. Plant Mol Biol 26:1737–1746

    Article  PubMed  CAS  Google Scholar 

  • Turgut K, Hodge R, Paul W, Scott R (1996) An anther-specific transcript from Brassica napus L. shows similarity to chalcone and stilbene synthase sequences. Turk J Bot 20:305–309

    Google Scholar 

  • Walden AR, Walter C, Gardner RC (1999) Genes expressed in Pinus radiata male cones include homologs to anther-specific and pathogenesis response genes. Plant Physiol 121:1103–1116

    Article  PubMed  CAS  Google Scholar 

  • Wang A, Xia Q, Xie W, Dumonceaux T, Zou J, Datla R, Selvaraj G (2002) Male gametophyte development in bread wheat (Triticum aestivum L.): molecular, cellular, and biochemical analyses of a sporophytic contribution to pollen wall ontogeny. Plant J 30:613–623

    Article  PubMed  CAS  Google Scholar 

  • Wang A, Xia Q, Xie W, Datla R, Selvaraj G (2003) The classical Ubisch bodies carry a sporophytically produced structural protein (RAFTIN) that is essential for pollen development. Proc Natl Acad Sci USA 100:14487–14492

    Article  PubMed  CAS  Google Scholar 

  • Wang W-K, Schaal BA, Chiou Y-M, Murakami N, Ge X-J, Huang C-C, Chiang T-Y (2007) Diverse selective modes among orthologs/paralogs of the chalcone synthase (Chs) gene family of Arabidopsis thaliana and its relative A. halleri ssp. gemmifera. Mol Phylogenet Evol 44:503–520

    Article  PubMed  CAS  Google Scholar 

  • Winkel BSJ (2004) Metabolic channelling in plants. Annu Rev Plant Biol 55:85–107

    Article  PubMed  CAS  Google Scholar 

  • Wright SY, Suner M-M, Bell PJ, Vaudin M, Greenland AJ (1993) Isolation and characterization of male flower cDNAs from maize. Plant J 3:41–49

    Article  PubMed  CAS  Google Scholar 

  • Wu SSH, Suen DF, Chang H, Huang AHC (2002) Maize tapetum xylanase is synthesized as a precursor, processed and activated by a serine protease, and deposited on the pollen. J Biol Chem 277:49055–49064

    Article  PubMed  CAS  Google Scholar 

  • Yang J, Gu H (2006) Duplication and divergent evolution of the CHS and CHS-like genes in the chalcone synthase (CHS) superfamily. Chin Sci Bull 51:505–509

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Drs. Shea Miller and John Simmonds for help with microscopy. SW and SO were supported by the NSERC Visiting Fellowship Program. We would also like to acknowledge Drs. M. Zaidi and C. Nasmith for critical review of this manuscript. This work was funded by an AAFC MII project with the Alberta Crop Industry Diversification Fund and the Western Grains Research Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurian S. Robert.

Additional information

Communicated by A. Atanassov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, S., O’Leary, S.J.B., Gleddie, S. et al. A chalcone synthase-like gene is highly expressed in the tapetum of both wheat (Triticum aestivum L.) and triticale (× Triticosecale Wittmack). Plant Cell Rep 27, 1441–1449 (2008). https://doi.org/10.1007/s00299-008-0572-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-008-0572-3

Keywords

Navigation