Skip to main content
Log in

Chromosomal DNA content of sweet pepper determined by association of cytogenetic and cytometric tools

  • Genetics and Genomics
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

The nuclear DNA content of sweet pepper (Capsicum annuum L. var. annuum, 2n = 24) has been measured by flow and image cytometries but the DNA content of each chromosome of this species has not yet been regarded. DNA content of individual chromosomes has been quantified by the flow karyotyping technique, which requires a great quantity of intact metaphasic chromosomes and methods that allow the characterization of individual chromosomes; however, the obtainment of adequate number of metaphases can be difficult in some species like C. annuum. In order to estimate the DNA content of each C. annuum var. annuum cv. “New Mexican” chromosome, flow and image cytometries were associated with the cytogenetic methodology. First, the DNA amount (2C = 6.90 pg) was established by flow cytometry. Integrated optical density (IOD) values were calculated by image cytometry for each Feulgen stained metaphasic chromosome. Then, by distributing the correspondent metaphasic value (4C = 13.80 pg) proportionally to average IOD values, the following chromosomal DNA contents were obtained in pg: 0.74 (chromosome 1), 0.67 (2), 0.61 (3, 4), 0.60 (5), 0.59 (6, 7), 0.58 (8), 0.57 (9), 0.56 (10) and 0.39 (11, 12). This study reports an alternative and reproducible technique that makes quantifying the chromosomal DNA content possible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

IOD:

Integrated optical density

FC:

Flow cytometry

IC:

Image cytometry

PI:

Propidium iodide

CV:

Coefficient of variation

bp:

Base pairs

References

  • Almeida PM, Carvalho CR (2004) NOR-associated heterochromatin of pepper chromosomes stained with acridine orange. Caryologia 57:172–176

    Google Scholar 

  • Baranyi M, Greilhuber J (1996) Flow cytometry and feulgen densitometric analysis of genome size variation in Pisum. Theor Appl Genet 92:297–307

    Article  Google Scholar 

  • Belletti P, Marzachì C, Lanteri S (1998) Flow cytometry measurement of nuclear DNA content in Capsicum (Solanaceae). Plant Syst Evol 209:85–91

    Article  CAS  Google Scholar 

  • Bennett MD, Leitch IJ (2005) Nuclear DNA amounts in angiosperms: progress, problems and prospects. Ann Bot 95:45–90

    Article  PubMed  CAS  Google Scholar 

  • Bennett MD, Smith JB (1976) Nuclear DNA amounts in angiosperms. Philos T Roy Soc B 274:227–274

    Article  CAS  Google Scholar 

  • Bogunic F, Muratovic E, Brown SC, Siljak-Yakovlev S (2003) Genome size and base composition of five Pinus species from the Balkan region. Plant Cell Rep 22:59–63

    Article  PubMed  CAS  Google Scholar 

  • Caixeta ET, Carvalho CR (2000) Chromomeric pattern of maize pachytene chromosomes after trypsin treatment. Hereditas 133:183–187

    Article  PubMed  CAS  Google Scholar 

  • Carvalho CR, Saraiva LS (1993) A new heterochromatin banding pattern revealed by modified HKG banding technique in maize chromosomes. Heredity 70:515–519

    Article  Google Scholar 

  • Carvalho CR, Saraiva LS (1997) High-resolution HKG-banding in maize mitotic chromosomes. J Plant Res 110:417–420

    Article  Google Scholar 

  • Carvalho CR, Saraiva LS, Mendonça MAC (2006) Flow cytometry analysis of DNA content in diploid and autotetraploid maize with B chromosomes. Maize Genet Coop News letter 80:35–36

    Google Scholar 

  • Chieco P, Jonker A, Van Noorden CJF (2001) Image cytometry, 1st edn. Springer, New York

    Google Scholar 

  • Clarindo WR, Carvalho CR, Alves BMG (2007) Mitotic evidence for the tetraploid nature of Glycine max provided by high-quality karyograms. Plant Syst Evol 265:101–107

    Article  Google Scholar 

  • Cruz CD (1997) Programa GENES—aplicativo computacional em genética e estatística, 1st edn. Universidade Federal de Viçosa, Viçosa

    Google Scholar 

  • De Laat AMM, Blaas J (1984) Flow-cytometry characterization and sorting of plant chromosomes. Theor Appl Genet 67:463–467

    Article  Google Scholar 

  • Doležel J, Bartoš J (2005) Plant DNA flow cytometry and estimation of nuclear genome size. Ann Bot 95:99–110

    Article  PubMed  Google Scholar 

  • Doležel J, Lucretti S (1995) High-resolution flow karyotyping and chromosome sorting in Vicia faba lines with standard and reconstructed karyotypes. Theor Appl Genet 90:797–802

    Article  Google Scholar 

  • Doležel J, Greilhuber J, Lucretti S, Meister A, Lysák MA, Nardi L, Obermayer R (1998) Plant genome size estimation by flow cytometry: inter-laboratory comparation. Ann Bot 82:17–26

    Article  Google Scholar 

  • Doležel J, Lysák MA, Kubaláková M, Šimková H, Macas J, Lucretti S (2001) Sorting of plant chromosomes. In: Darzynkiewiez Z, Crissman HA, Robinson JP (eds) Cytometry, part B, vol 64, 3rd edn. Academic Press, California, pp 3–31

    Google Scholar 

  • Doležel J, Bartoš J, Voglmayr H, Greilhuber J (2003) Nuclear DNA and genome size of trout and human. Cytometry 51:127–128

    Article  PubMed  Google Scholar 

  • Doležel J, Kubaláková M, Bartoš J, Macas J (2004) Flow cytogenetics and plant genome mapping. Chromosome Res 12:77–91

    Article  PubMed  Google Scholar 

  • Doležel J, Kubaláková M, Paux E, Bartoš J, Feuillet C (2007) Chromosome-based genomics in the cereals. Chromosome Res 15:51–66

    Article  PubMed  Google Scholar 

  • Freitas DV, Carvalho CR, Filho FJN, Astolfi-Filho S (2007) Karyotype with 210 chromosomes in guaraná (Paullinia cupana ‘Sorbilis’). J Plant Res 120:399–404

    Article  PubMed  Google Scholar 

  • Galbraith DW, Harkins KR, Maddox JM, Ayres NM, Sharma DP, Firoozabady E (1983) Rapid flow cytometric analysis of the cell cycle in intact plant tissues. Science 220:1049–1051

    Article  PubMed  CAS  Google Scholar 

  • Greilhuber J (2005) Intraspecific variation in genome size in angiosperms: identifying its existence. Ann Bot 95:91–98

    Article  PubMed  CAS  Google Scholar 

  • Greilhuber J (1998) Intraspecific variation in genome size: a critical reassessment. Ann Bot 82:27–35

    Article  Google Scholar 

  • Greilhuber J, Ebert I (1994) Genome size variation in Pisum sativum. Genome 37:646–655

    Article  PubMed  CAS  Google Scholar 

  • Guerra MS (1986) Reviewing the chromosome nomenclature of Levan et al. Rev Bras Genet 9:741–743

    Google Scholar 

  • Hardie DC, Gregory TR, Hebert PDN (2002) From pixels to picograms: a beginners’ guide to genome quantification by Feulgen image analysis densitometry. J Histochem Cytochem 50:735–749

    PubMed  CAS  Google Scholar 

  • Johnston JS, Bennett MD, Rayburn AL, Galbraith DW, Price HJ (1999) Reference standards for determination of DNA content of plant nuclei. Am J Bot 86:609–613

    Article  PubMed  CAS  Google Scholar 

  • Kovářová P, Navrátilová A, Macas J, Doležel J (2007) Chromosome analysis and sorting in Vicia sativa using flow cytometry. Biol Plantarum 51:43–48

    Article  Google Scholar 

  • Lanteri S, Pickersgill B (1993) Chromosomal structural changes in Capsicum annuum L. and C. chinense Jacq. Euphytica 67:155–160

    Article  Google Scholar 

  • Lee JH, Arumuganathan K, Kaeppler SM, Park SW, Kim KY, Chung YS, Kim DH, Fukui K (2002) Variability of chromosomal DNA contents in maize (Zea mays L.) inbred and hybrid lines. Planta 215:666–671

    Article  PubMed  CAS  Google Scholar 

  • Lee JH, MA Y, Wako T, LI LC, Kim KY, Park SW, Uchiyama S, Fukui K (2004) Flow karyotypes and chromosomal DNA contents of genus Triticum species and rye (Secale cereale). Chromosome Res 12:93–102

    Article  PubMed  CAS  Google Scholar 

  • Loureiro J, Rodriguez E, Doležel J, Santos C (2006) Comparison of four nuclear isolation buffers for plant DNA flow cytometry. Ann Bot 98:679–689

    Article  PubMed  CAS  Google Scholar 

  • Lucretti S, Doležel J, Schubert I, Fuchs J (1993) Flow karyotyping and sorting of Vicia faba chromosomes. Theor Appl Genet 85:665–672

    Article  Google Scholar 

  • Moscone EA, Lambrou M, Hunziker AT, Ehrendorfer F (1993) Giemsa C-banded karyotypes in Capsicum (Solanaceae). Plant Syst Evol 186:213–229

    Article  Google Scholar 

  • Moscone EA, Loidl J, Ehrendorfer F, Hunziker AT (1995) Analysis of active nucleolus organizing regions in Capsicum (Solanaceae) by silver staining. Am J Bot 82:276–287

    Article  Google Scholar 

  • Moscone EA, Lambrou M, Ehrendorfer F (1996) Fluorescent chromosome banding in the cultivated species of Capsicum (Solanaceae). Plant Syst Evol 202:37–63

    Article  Google Scholar 

  • Moscone EA, Baranyi M, Ebert I, Greilhuber J, Ehrendorfer F, Hunziker AT (2003) Analysis of nuclear DNA content in Capsicum (Solanaceae) by flow cytometry and Feulgen densitometry. Ann Bot 92:21–29

    Article  PubMed  Google Scholar 

  • Mukherjee S, Sharma AK (1990) Intraspecific variation of nuclear DNA in Capsicum annuum L. Plant Sci 100:1–6

    Google Scholar 

  • Neumann P, Lysák M, Doležel J, Macas J (1998) Isolation of chromosomes from Pisum sativum L. hairy root cultures and their analysis by flow cytometry. Plant Sci 137:205–215

    Article  CAS  Google Scholar 

  • Otto FJ (1990) DAPI staining of fixed cells for high-resolution flow cytometry of nuclear DNA. In: Darzynkiewiez Z, Crissman HA, Robinson JP (eds) Methods in cell biology, vol 33. Academic Press, San Diego, pp 105–110

    Google Scholar 

  • Pickersgill B (1991) Cytogenetics and evolution of Capsicum L. In: Tsuchiya T, Gupta PK (eds) Chromosome engineering in plants: genetics, breeding, evolution, part B. Elsevier, Amsterdam, pp 139–160

    Google Scholar 

  • Puech M, Giroud F (1999) Standardisation of DNA quantitation by image analysis: quality control of instrumentation. Cytometry 36:11–17

    Article  PubMed  CAS  Google Scholar 

  • Rosado TB, Carvalho CR, Saraiva LS (2005) DNA content of maize metaphasic A and B chromosomes determined by image cytometry. Maize Genet Coop News letter 79:48–49

    Google Scholar 

  • Schifino-Wittmann MT (2001) Determinação da quantidade de DNA nuclear em plantas. Ciência Rural 31:897–902

    Google Scholar 

  • Shapiro HM (2003) Practical flow cytometry, 4th edn. Wiley, New Jersey

    Google Scholar 

  • Tanksley SD, Bernatzky R, Lapitan NL, Prince JP (1988) Conservation of gene repertoire but not gene order in pepper and tomato. P Natl Acad Sci USA 85:6419–6423

    Article  CAS  Google Scholar 

  • Vilhar B, Dermastia M (2002) Standardization of instrumentation in plant DNA image cytometry. Acta Bot Croat 61:11–26

    CAS  Google Scholar 

  • Vilhar B, Greilhuber J, Dolenc Koce J, Temsch EM, Dermastia M (2001) Plant genome size measurement with DNA image cytometry. Ann Bot 87:719–728

    Article  CAS  Google Scholar 

  • Voglmayr H, Greilhuber J (1998) Genome size determination in Peronosporales (Oomycota) by Feulgen image analysis. Fungal Genet Biol 25:181–195

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

We thank CNPq (Conselho Nacional de Pesquisa, Brazil) for providing the financial support for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Roberto Carvalho.

Additional information

Communicated by J. Register.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Abreu, I.S., Carvalho, C.R. & Clarindo, W.R. Chromosomal DNA content of sweet pepper determined by association of cytogenetic and cytometric tools. Plant Cell Rep 27, 1227–1233 (2008). https://doi.org/10.1007/s00299-008-0539-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-008-0539-4

Keywords

Navigation