Skip to main content
Log in

Wild plants, Andropogon virginicus L. and Miscanthus sinensis Anders, are tolerant to multiple stresses including aluminum, heavy metals and oxidative stresses

  • Biotic and Abiotic Stress
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

To isolate high-tolerant plants against aluminum (Al), heavy metals and/or oxidative stresses as a final goal, screening of Al tolerant plants from a collection of 49 wild plants was first of all performed in this study. Andropogon virginicus L. and Miscanthus sinensis Anders showed high Al tolerant phenotypes (more than 35% values in both relative root growth and germination frequency even under 900 μM Al concentration) in our screening. Al tolerance mechanisms in these two plants were characterized and the results suggested that (1) a transport system of toxic Al ions from root to shoot, (2) a suppression of Al accumulation in root tip region and (3) a suppression of oxidative damages by an induction of anti-peroxidation enzymes, such as superoxide dismutase (SOD) and catalase, were involved in the tolerance mechanisms. Six wild plants [Andropogon, Miscanthus, Dianthus japonicus Thunb, Echinochloa crus-galli (L.) Beauv, Reynoutria japonica Houtt, and Sporobolus fertilis (Steud.) W. Clayton] were furthermore tested for their sensitivity against heavy metal stresses and oxidative stresses. The two high Al tolerant plants, Andropogon and/or Miscanthus, showed tolerance to Cr, Zn, diamide or hydrogen peroxide, suggesting common tolerance mechanisms among the tested stresses. Reynoutria showed tolerance to diamide and hydrogen peroxide, Sporobolus to Cr and Echinocholoa to Cd and Cu. Moreover, the collection of wild plants used in this study was a very useful kit to isolate tolerant plants against various abiotic stresses within a short period of time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

DCFDA:

2′,7′-Dichlorofluorescein diacetate

SOD:

Superoxide dismutase

GST:

Glutathione S-transferase

MS:

Murashige and Skoog

References

  • Aebi H (1974) Catalase. In: Bergmeyer HU, Gawehn K (eds) Methods of enzymatic analysis, vol 2. Academic Press, New York, pp 673–684

    Google Scholar 

  • Akashi K, Miyake C, Yokota A (2001) Citrulline, a novel compatible solute in drought-tolerant wild watermelon leaves, is an efficient hydroxyl radical scavenger. FEBS Lett 508:438–442

    Article  PubMed  CAS  Google Scholar 

  • Akeson MA, Munns DN, Burau RG (1989) Adsorption of Al3+ to phosphatidylcoline vesicles. Biochim Biophys Acta 986:33–40

    Article  PubMed  CAS  Google Scholar 

  • Bartels D (2001) Targeting detoxification pathways: an efficient approach to obtain plants with multiple stress tolerance. Trends Plant Sci 6:284–286

    Article  PubMed  CAS  Google Scholar 

  • Bech J, Poschenrieder C, Llugany M, Barceló J, Tume P, Tobias FJ, Barranzuela JL, Vásquez ER (1997) Arsenic and heavy metal contamination of soil and vegetation around a copper mine in northern Peru. Sci Total Environ 203:83–91

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:249–254

    Article  Google Scholar 

  • Cumming JR, Ning J (2003) Arbuscular mycorrhizal fungi enhance aluminium resistance of broomsedge (Andropogon virginicus L.). J Exp Bot 54:1447–1459

    Article  PubMed  CAS  Google Scholar 

  • Delhaize E, Ryan PR, Randall PJ (1993) Aluminum tolerance in wheat (Triticum aestivum L.) II. Aluminum-stimulated excretion of malic acid from root apices. Plant Physiol 103:695–702

    PubMed  CAS  Google Scholar 

  • Delhaize E, Ryan P, Hebb DM, Yamamoto Y, Sasaki T, Matsumoto H (2004) Engineering high-level aluminum tolerance in barley with the ALMT1 gene. Proc Natl Acad Sci USA 101:15249–15254

    Article  PubMed  CAS  Google Scholar 

  • Doncheva S, Amenós M, Poschenrieder C, Barceló J (2005) Root cell pattering: a primary target for aluminium toxicity in maze. J Exp Bot 56:1213–1220

    Article  PubMed  CAS  Google Scholar 

  • Ellis RP, Forster BP, Robinson D, Handley LL, Grdon DC, Russel JR, Powell W (2000) Wild barley: a source of genes for crop improvement in the 21st century. J Exp Bot 51:9–17

    Article  PubMed  CAS  Google Scholar 

  • Enomoto T (2000) Ecological studies on plant succession at newly reclaimed Kasaoka Bay Polder. Doctoral thesis. Okayama University, Japan

  • Ezaki B, Gardner RC, Ezaki Y, Matsumoto H (2000) Expression of aluminum-induced genes in transgenic Arabidopsis plants can ameliorate aluminum stress and/or oxidative stress. Plant Physiol 122:657–665

    Article  PubMed  CAS  Google Scholar 

  • Ezaki B, Katsuhara M, Kawamura M, Matsumoto H (2001) Different mechanisms of four aluminum (Al)-resistant transgenes for Al toxicity in Arabidopsis. Plant Physiol 127:918–927

    Article  PubMed  CAS  Google Scholar 

  • Ezaki B, Sasaki K, Matsumoto H, Nakashima S (2005) Functions of two genes in aluminum (Al) stress resistance: repression of oxidative damage by the AtBCB gene and promotion of efflux of Al ions by the NtGDI1 gene. J Exp Bot 56:2661–2671

    Article  PubMed  CAS  Google Scholar 

  • Ezaki B, Kiyohara H, Matsumoto H, Nakashima S (2007) Over-expression of an auxilin-like gene (F9E10.5) can suppress Al uptake in roots of Arabidopsis. J Exp Bot 58:497–506

    Article  PubMed  CAS  Google Scholar 

  • Illėś P, Schlicht M, Pavlovkin J, Lichtscheidl I, Balusška F, Ovečka M (2006) Aluminium toxicity in plants: internalization of aluminium into cells of the transition zone in Arabidopsis root apices related to changes in plasma membrane potential, endosomal behaviour, and nitric oxide production. J Exp Bot 57:4201–4213

    Article  PubMed  Google Scholar 

  • Ivandic V, Hackett CA, Zhang ZJ, Staub JE, Nevo E, Thomas WTB, Forster BP (2000) Phenotypic responses of wild barley to experimentally imposed water stress. J Exp Bot 51:2021–2029

    Article  PubMed  CAS  Google Scholar 

  • Kayama M (2001) Comparison of the aluminum tolerance of Miscanthus sinensis Anderss. and Miscanthus sacchariflorus Bentham in hydroculture. Int J Plant Sci 162:1025–1031

    Article  CAS  Google Scholar 

  • Kidd PS, Llugany M, Poschenrieder C, Gunse B, Barcelon J (2001) The role of root exudates in aluminum resistance and silicon-induced amelioration of aluminum toxicity in three varieties of maize (Zea mays L.). J Exp Bot 52:1339–1352

    Article  PubMed  CAS  Google Scholar 

  • Kochian LV, Hoekenga OA, Pineros MA (2004) How do crop plants tolerate acid soil? Mechanisms of aluminum tolerance and phosphorous deficiency. Annu Rev Plant Biol 55:459–493

    Article  PubMed  CAS  Google Scholar 

  • Lee YP, Kim SH, Bang JW, Lee HS, Kwak SS, Kwon SY (2007) Enhanced tolerance to oxidative stress in transgenic tobacco plants expressing three antioxidant enzymes in chloroplasts. Plant Cell Rep 26:591–598

    Article  PubMed  CAS  Google Scholar 

  • Magalhaes JV, Liu J, Guimarães CT, Lana UG, Alves VM, Wang YH, Schaffert RE, Hoekenga OA, Piñeros MA, Shaff JE, Klein PE, Carneiro NP, Coelho CM, Trick HN, Kochian LV (2007) A gene in the multidrug and toxic compound extrusion (MATE) family confers aluminum tolerance in sorghum. Nat Genet 39:1156–1161

    Article  PubMed  CAS  Google Scholar 

  • Matsumoto H, Yamamoto Y, Ezaki B (2003) Recent advances in the physiological and molecular mechanism of Al toxicity and tolerance in higher plants. In: Hemantaranjan A (ed) Advances in plant physiology, vol 5. Scientific Publishers, Jodhpur, pp 29–74

    Google Scholar 

  • Mittova V, Guy M, Tal M, Volokita M (2004) Salinity up-regulates the antioxidative system in root mitochondria and peroxisomes of the wild salt-tolerant tomato species Lycopersicon pennellii. J Exp Bot 55:1105–1113

    Article  PubMed  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Newmyer S, Christensen A, Sever S (2003) Auxilin-dynamin interactions link the uncoating ATPase chaperone machinery with vesicle formation. Dev Cell 4:929–940

    Article  PubMed  CAS  Google Scholar 

  • Ofei-manu P, Wagatsuma T, Ishikawa S, Tawaraya K (2001) The plasma membrane strength of root-tip cells and root phenolic compounds are correlated with Al tolerance in several common woody plants. Soil Sci Plant Nutr 47:359–376

    CAS  Google Scholar 

  • Richards KD, Schott EJ, Sharma YK, Davis KR, GardnerRC (1998) Aluminum induces oxidative stress genes in Arabidopsis thaliana. Plant Physiol 116:409–418

    Article  PubMed  CAS  Google Scholar 

  • Sasaki T, Yamamoto Y, Ezaki B, Katsuhara M, Ahn SJ, Ryan P, Delhaize E, Matsumoto H (2004) A wheat gene encoding an aluminum-activated malate transporter. Plant J 37:645–653

    Article  PubMed  CAS  Google Scholar 

  • Schützendübel A, Polle A (2002) Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization. J Exp Bot 53:1351–1356

    Article  PubMed  Google Scholar 

  • Shen W, Gomez-Cadenas A, routly EL, Ho THD, Simonds JA, Gulik PJ (2001) The salt stress-inducible protein kinase gene, esi47, from the salt-tolerant wheatgrass Lophopyrum elongatum is involved in plant hormone signaling. Plant Physiol 125:1429–1441

    Article  PubMed  CAS  Google Scholar 

  • Shivaguru M, Horst WJ (1998) The distal part of the transition zone in the most aluminium-sensitive apical root zone of maize. Plant Physiol 116:155–163

    Article  Google Scholar 

  • Umeda A, Meyerholz A, Ungewickell E (2000) Identification of the universal cofactor (auxilin 2) in clathrin coat dissociation. Eur J Cell Biol 79:336–342

    Article  PubMed  CAS  Google Scholar 

  • Watanabe T, Jansen S, Osaki M (2006) Al-Fe interactions and growth enhancement in Melastoma malabathricum and Miscanthus sinensis dominating acid sulphate soils. Plant Cell Environ 29:2124–2132

    Article  PubMed  CAS  Google Scholar 

  • Zhao X, Greener T, Al-Hasani H, Cushman SW, Eisenberg E, Greene LE (2001) Expression of auxilin or AP180 inhibits endocytosis by mislocalizing clathrin: evidence for formation of nascent pits containing AP1 or AP2 but not clathrin. J Cell Sci 114:353–365

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Ms. Kanako Akashi, Ms. Tomomi Sugao and Ms. Tomoko Hayashi for their technical assistance. We also thank Dr. Kader MD Abdul for his revision and fruitful comments for our manuscript. This work received financial support from the Ministry of Education, Culture, Sports, Science and Technology (Grant-in-Aid for Scientific Research (C)(2) no. 16580046 to B.E. and Grant-in-Aid for Scientific Research (C)(2) no. 19580066 to B.E.), JSPS Joint Project under Japan-U.S. Cooperative Science Program (to B.E.), JSPS Joint Project under Japan-Korea Cooperative Science Program (to B.E.), Special Educational Study on “Crop Improvement by Gene Analyses” (to B.E.) and Oohara Foundation for Agriculture Sciences (to B.E.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bunichi Ezaki.

Additional information

Communicated by R. Schmidt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ezaki, B., Nagao, E., Yamamoto, Y. et al. Wild plants, Andropogon virginicus L. and Miscanthus sinensis Anders, are tolerant to multiple stresses including aluminum, heavy metals and oxidative stresses. Plant Cell Rep 27, 951–961 (2008). https://doi.org/10.1007/s00299-007-0503-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-007-0503-8

Keywords

Navigation