Skip to main content

Advertisement

Log in

A novel connection between nucleotide and carbohydrate metabolism in mitochondria: sugar regulation of the Arabidopsis nucleoside diphosphate kinase 3a gene

  • Genetics and Genomics
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Sugar metabolism is intricately connected with mitochondria through the conversion of sugars to ATP, and through the production of carbon skeletons that can be used in anabolic processes. Sugar molecules also take part in signalling cascades. In this study we investigated the impact of sucrose on the expression of the Arabidopsis thaliana Nucleoside Diphosphate Kinase gene family (NDPK, EC 2.7.4.6), focusing on NDPK3a, the product of which is located predominantly in mitochondria. Using quantitative PCR we show that the NDPK3a gene is subject to sucrose and glucose induction, while no other Arabidopsis NDPK gene are sucrose-inducible. The induction reaches a half-maximum after about 6 hours and is stable for at least 48 h. Sucrose and glucose inductions were found not to be affected by the presence of a hexokinase inhibitor, N-acetyl-glucosamine. Furthermore, turanose, a sucrose analogue that is not metabolised in plant cells, did not induce NDPK3a gene expression. An analysis of the NDPK3a gene revealed two WBOXHWISO1 boxes in the promoter region, elements that have previously been reported to be involved in sugar signalling in barley via the SUSIBA2 protein. SUSIBA2 belongs to the WRKY group of transcription factors. In this study we used two mutants containing T-DNA insertions in WRKY-genes, AtWrky4 and AtWrky34, to investigate the possible involvement of WRKY transcription factors in the sugar induction of NDPK3a.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

HXK:

Hexokinase

NAG:

N-acetyl-glucosamine

NDPK:

Nucleoside diphosphate kinase

qPCR:

Quantitative PCR

PCD:

Programmed cell death

SURE:

Sugar responsive element

References

  • Arenas-Huertero F, Arroyo A, Zhou L, Sheen J, Leon P (2000) Analysis of Arabidopsis glucose insensitive mutants, gin5 and gin6, reveals a central role of the plant hormone ABA in the regulation of plant vegetative development by sugar. Genes Dev 14:2085–2096

    PubMed  CAS  Google Scholar 

  • Choi G, Yi H, Lee J, Kwon YK, Soh MS, Shin B, Luka Z, Hahn TR, Song PS (1999) Phytochrome signalling is mediated through nucleoside diphosphate kinase 2. Nature 401:610–613

    Article  PubMed  CAS  Google Scholar 

  • Crawford RM, Treharne KJ, Best OG, Riemen CE Muimo R, Gruenert DC, Arnaud-Dabernat S, Daniel JY, Mehta A (2006) NDPK-A (but not NDPK-B) and AMPK alpha1 (but not AMPK alpha2) bind the cystic fibrosis transmembrane conductance regulator in epithelial cell membranes. Cell Signal 18:1595–1603

    Article  PubMed  CAS  Google Scholar 

  • Damari-Weissler H, Ginzburg A, Gidoni D, Mett A, Krassovskaya I, Weber AP, Belausov E, Granot D (2007) Spinach SoHXK1 is a mitochondria-associated hexokinase. Planta (Published online 27 May 2007). doi:10.1007/s00425-007-0546-7

  • Damari-Weissler H, Kandel-Kfir M, Gidoni D, Mett A, Belauso E, Granot D (2006) Evidence for intracellular spatial separation of hexokinases and fructokinases in tomato plants. Planta 224:1495–1502

    Article  PubMed  CAS  Google Scholar 

  • Escobar Galvis ML, Marttila S, Hakansson G, Forsberg J, Knorpp C (2001) Heat stress response in pea involves interaction of mitochondrial nucleoside diphosphate kinase with a novel 86-kilodalton protein. Plant Physiol 126:69–77

    Article  PubMed  CAS  Google Scholar 

  • Eulgem T, Rushton PJ, Robatzek S, Somssich IE (2000) The WRKY superfamily of plant transcription factors. Trends Plant Sci 5:199–206

    Article  PubMed  CAS  Google Scholar 

  • Fernie AR, Carrari F, Sweetlove LJ (2004) Respiratory metabolism: glycolysis, the TCA cycle and mitochondrial electron transport. Curr Opin Plant Biol 7:254–261

    Article  PubMed  CAS  Google Scholar 

  • Giege P, Heazlewood JL, Roessner-Tunali U, Millar AH, Fernie AR, Leaver CJ, Sweetlove LJ (2003) Enzymes of glycolysis are functionally associated with the mitochondrion in Arabidopsis cells. Plant Cell 15:2140–2151

    Article  PubMed  CAS  Google Scholar 

  • Giege P, Sweetlove LJ, Cognat V, Leaver CJ (2005) Coordination of nuclear and mitochondrial genome expression during mitochondrial biogenesis in Arabidopsis. Plant Cell 17:1497–1512

    Article  PubMed  CAS  Google Scholar 

  • Goddijn O, Smeekens S (1998) Sensing trehalose biosynthesis in plants. Plant J 14:143–146

    Article  PubMed  CAS  Google Scholar 

  • Hammargren J, Sundström S, Johansson M, Bergman P, Knorpp C (2007) On the phylogeny, expression and targeting of plant nucleoside diphosphate kinases. Physiol Plant 129:79–89

    Article  CAS  Google Scholar 

  • Hilgarth C, Sauer N, Tanner W (1991) Glucose increases the expression of the Atp/Adp translocator and the glyceraldehyde-3-phosphate dehydrogenase genes in Chlorella. J Biol Chem 266:24044–24047

    PubMed  CAS  Google Scholar 

  • Higo K, Ugawa Y, Iwamoto M, Korenaga T (1999) Plant cis-acting regulatory DNA elements (PLACE) database: 1999. Nucleic Acids Res 27:297–300

    Article  PubMed  CAS  Google Scholar 

  • Jang JC, Sheen J (1994) Sugar sensing in higher plants. Plant Cell 6:1665–1679

    Article  PubMed  CAS  Google Scholar 

  • Jang JC, Leon P, Zhou L, Sheen J (1997) Hexokinase as a sugar sensor in higher plants. Plant Cell 9:5–19

    Article  PubMed  CAS  Google Scholar 

  • Jansson C (2005) Sugar signaling mutants in Arabidopsis. In: Esser K, Lüttge U, Beychlag J, Murata W (eds) Progress in Botany. Springer, Heidelberg, pp 51–67

    Google Scholar 

  • Lipskaya TY, Voinova VV (2005) Functional coupling between nucleoside diphosphate kinase of the outer mitochondrial compartment and oxidative phosphorylation. Biochemistry (Mosc) 70:1354–1362

    Article  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408

    Article  PubMed  CAS  Google Scholar 

  • Loreti E, Alpi A Perata P (2000) Glucose and disaccharide-sensing mechanisms modulate the expression of alpha-amylase in barley embryos. Plant Physiol 123:939–948

    Article  PubMed  CAS  Google Scholar 

  • Martin T, Hellmann H, Schmidt R, Willmitzer L, Frommer WB (1997) Identification of mutants in metabolically regulated gene expression. Plant J 11:53–62

    Article  PubMed  CAS  Google Scholar 

  • Moisyadi S, Dharmasiri S, Harrington HM, Lukas TJ (1994) Characterization of a low molecular mass autophosphorylating protein in cultured sugarcane cells and its identification as a nucleoside diphosphate kinase. Plant Physiol 104:1401–1409

    Article  PubMed  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Nato A, Mirshahi A, Tichtinsky G, Mirshahi M, Faure JP, Lavergne D, De Buyser J, Jean C, Ducreux G, Henry Y (1997) Immunological detection of potential signal-transduction proteins expressed during wheat somatic tissue culture. Plant Physiol 113:801–807

    Article  PubMed  CAS  Google Scholar 

  • Novikova GV, Moshkov IE, Smith AR, Kulaeva ON, Hall MA (1999) The effect of ethylene and cytokinin on guanosine 5′-triphosphate binding and protein phosphorylation in leaves of Arabidopsis thaliana. Planta 208:239–246

    Article  PubMed  CAS  Google Scholar 

  • Pedersen PL (1973) Coupling of adenosine triphosphate formation in mitochondria to the formation of nucleoside triphosphates. Involvement of nucleoside diphosphokinase. J Biol Chem 248: 3956–3962

    PubMed  CAS  Google Scholar 

  • Postel EH, Berberich SJ, Flint SJ, Ferrone CA (1993) Human c-myc transcription factor PuF identified as nm23-H2 nucleoside diphosphate kinase, a candidate suppressor of tumor metastasis. Science 261:478–480

    Article  PubMed  CAS  Google Scholar 

  • Rezende GL, Logullo C, Meyer L, Machado LB, Oliveira-Carvalho AL, Zingali RB, Cifuentes D, Galina A (2006) Partial purification of tightly bound mitochondrial hexokinase from maize (Zea mays L.) root membranes. Braz J Med Biol Res 39:1159–69

    PubMed  CAS  Google Scholar 

  • Rolland F, Baena-Gonzalez E, Sheen J (2006) Sugar sensing and signaling in plants: conserved and novel mechanisms. Annu Rev Plant Biol 57:675–709

    Article  PubMed  CAS  Google Scholar 

  • Rolland F, Moore B, Sheen J (2002) Sugar sensing and signaling in plants. Plant Cell 14(Suppl):S185–S205

    PubMed  CAS  Google Scholar 

  • Ryu JS, Kim JI, Kunkel T, Kim BC, Cho DS, Hong SH, Kim SH, Fernandez AP, Kim Y, Alonso JM, Ecker JR, Nagy F, Lim PO, Song PS, Schafer E, Nam HG (2005) Phytochrome-specific type 5 phosphatase controls light signal flux by enhancing phytochrome stability and affinity for a signal transducer. Cell 120:395–406

    Article  PubMed  CAS  Google Scholar 

  • Spetea C, Hundal T, Lundin B, Heddad M, Adamska I, Andersson B (2004) Multiple evidence for nucleotide metabolism in the chloroplast thylakoid lumen. Proc Natl Acad Sci USA 101:1409–1414

    Article  PubMed  CAS  Google Scholar 

  • Struglics A, Håkansson G (1999) Purification of a serine and histidine phosphorylated mitochondrial nucleoside diphosphate kinase from Pisum sativum. Eur J Biochem 262:765–773

    Article  PubMed  CAS  Google Scholar 

  • Sun C, Palmqvist S, Olsson H, Boren M, Ahlandsberg S, Jansson C (2003) A novel WRKY transcription factor, SUSIBA2, participates in sugar signaling in barley by binding to the sugar-responsive elements of the iso1 promoter. Plant Cell 15:2076–2092

    Article  PubMed  CAS  Google Scholar 

  • Sun C, Höglund AS, Olsson H, Mangelsen E, Jansson C (2005) Antisense oligodeoxynucleotide inhibition as a potent strategy in plant biology: Identification of SUSIBA2 as a transcriptional activator.in plant sugar signaling. Plant J 44:128–138

    Article  PubMed  CAS  Google Scholar 

  • Sweetlove LJ, Mowday B, Hebestreit HF, Leaver CJ, Millar AH (2001) Nucleoside diphosphate kinase III is localized to the inter-membrane space in plant mitochondria. FEBS Lett 508:272–276

    Article  PubMed  CAS  Google Scholar 

  • Tanaka N, Ogura T, Noguchi T, Hirano H, Yabe N, Hasunuma K (1998) Phytochrome-mediated light signals are transduced to nucleoside diphosphate kinase in Pisum sativum L. cv Alaska. J Photochem Photobiol B 45:113–121

    Article  PubMed  CAS  Google Scholar 

  • Xiao WY, Sheen J, Jang JC (2000) The role of hexokinase in plant sugar signal transduction and growth and development. Plant Mol Biol 44:451–461

    Article  PubMed  CAS  Google Scholar 

  • Yang LM, Lamppa GK (1996) Rapid purification of a chloroplast nucleoside diphosphate kinase using CoA-affinity chromatography. Biochim Biophys Acta 1294:99–102

    PubMed  Google Scholar 

  • Yuan JS, Reed A, Chen F, Stewart CN Jr (2006) Statistical analysis of real-time PCR data. BMC Bioinf 22:7:85

    CAS  Google Scholar 

  • Zimmermann S, Baumann A, Jaekel K, Marbach I, Engelberg D, Frohnmeyer H (1999) UV-responsive genes of Arabidopsis revealed by similarity to the Gcn4-mediated UV response in yeast. J Biol Chem 274:17017–17024

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the technical advise from Ingrid Eriksson, and we thank Monika Johansson for help with the promoter analysis. This research has received support from the Swedish Science Research Council and the Magnus Bergvall’s foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carina Knorpp.

Additional information

Communicated by R. Reski.

Electronic supplementary material

Below is the link to the electronic supplementary material.

299_2007_486_MOESM1_ESM.ppt

Supplemental Fig. 1 Verification of T-DNA insertion mutants. A; PCR with right primer (RP) and left primer (LP) for respective gene, AtWRKY4 and AtWRKY34, with genomic DNA from wild type (wt), Atwrky4 (w4) and Atwrky34 (w34). M, 1kb marker. B; PCR with right primer (RP) and left border primer b1 (LBb1) with genomic DNA from wild type (wt) and Atwrky mutants (w4 and w34). M, 1kb marker. C; The T-DNA insertion in the AtWRKY4 and AtWRKY34 genes (PPT 1603 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hammargren, J., Rosenquist, S., Jansson, C. et al. A novel connection between nucleotide and carbohydrate metabolism in mitochondria: sugar regulation of the Arabidopsis nucleoside diphosphate kinase 3a gene . Plant Cell Rep 27, 529–534 (2008). https://doi.org/10.1007/s00299-007-0486-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-007-0486-5

Keywords

Navigation