Skip to main content
Log in

Chromosome elimination and fragment introgression and recombination producing intertribal partial hybrids from Brassica napus × Lesquerella fendleri crosses

  • Genetic Transformation and Hybridization
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

The intertribal sexual hybrids between three Brassica napus (2= 38) cultivars and Lesquerella fendleri (2= 12) with the latter as pollen parent were obtained and characterized for their phenotypes and chromosomal and genomic constitutions. F1 plants and their progenies mainly resembled female B. napus parents, while certain characters of L. fendleri were expressed in some plants, such as longer flowering period, basal clustering stems and particularly the glutinous layer on seed coats related to drought tolerance. Twenty-seven F1 plants were cytologically classified into five types: type I (16 plants) had 2= 38, type II (2) had 2= 38–42, type III (3) had 2= 31–38, type IV (5) had 2n = 25–31, and type V (1) had 2n = 19–22. Some hybrids and their progenies were mixoploids in nature with only 1–2 chromosomes or some chromosomal fragments of L. fendleri included in their cells. AFLP (Amplified fragments length polymorphism) analysis revealed that bands absent in B. napus, novel for two parents and specific for L. fendleri appeared in all F1 plants and their progenies. Some progenies had the modified fatty acid profiles with higher levels of linoleic, linolenic, eicosanoic and erucic acids than those of B. napus parents. The occurrence of these partial hybrids with phenotypes, genomic and fatty acid alterations resulted possibly from the chromosome elimination and doubling accompanied by the introgression of alien DNA segments and genomic reorganization. The progenies with some useful traits from L. fendleri should be new and valuable resource for rapeseed breeding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Barclay AS, Gentry HS, Jones Q (1962) The search for new industrial crops II. Lesquerella (Cruciferae) as a source of new oilseeds. Econ Bot 16:95–100

    CAS  Google Scholar 

  • Bassam B, Caetano-Anolles G, Gresshoff PM (1991) Fast and sensitive silver staining of DNA in polyacrylamide gels. Anal Biochem 196:80–83

    Article  PubMed  CAS  Google Scholar 

  • Broun P, Boddupalli S, Somerville C (1998) A bifunctional oleate 12-hydroxylase: desaturase from Lesquerella fendleri. Plant J 13(2):201–210

    Article  PubMed  CAS  Google Scholar 

  • Carlson KD, Bagby M, Chaudry A (1990) Analysis of oil and meal from Lesquerella fendleri seed. J Am Oil Chem Soc 67:438–442

    Article  CAS  Google Scholar 

  • Chen HF, Wang H, Li ZY (2007) Production and genetic analysis of partial hybrids in intertribal crosses between Brassica species (B. rapa, B. napus) and Capsella bursa-pastoris. Plant Cell Rep. DOI 10.1007/s00299-007-0392-x

  • Chrungu B, Verma N, Mohanty A, Pradhan A, Shivanna KR (1999) Production and characterization of interspecific hybrids between Brassica maurorum and crop brassicas. Theor Appl Genet 98:608–613

    Article  Google Scholar 

  • Dellaporta SL,Wood J, Hicks JB (1983) A plant DNA mini preparation: version II. Plant Mol Biol Rep 1:19–21

    Article  CAS  Google Scholar 

  • Faure N, Serieys H, Berville A, Cazaux E, Keen F (2002)Occurrence of partial hybrids in wide crosses between sunflower (Helianthus annuus) and perennial species H. mollis and H. orgyalis. Theor Appl Genet 104:652–660

    Article  PubMed  CAS  Google Scholar 

  • Gernand D, Rutten T, Varshney A, Rubtsova M, Prodanovic S, Bru¨ss C, Kumlehn J, Matzk F, Houben A (2006) Uniparental chromosome elimination at mitosis and interphase in wheat and pearl millet crosses involves micronucleus formation, progressive heterochromatinization and DNA fragmentation. Plant Cell 17: 2431–2438

    Article  Google Scholar 

  • Glimelius K (1999) Somatic hybridization. In: Gómez-Campo C (ed) Biology of Brassica coenospecies. Elsevier, Amsterdam, pp 107–148

    Chapter  Google Scholar 

  • Harlan JR, de Wet JMJ (1971) Toward a rational classification of cultivated plants. Taxon 20:509–517

    Article  Google Scholar 

  • Hua YW, Liu M, Li ZY (2006) Parental genome separation and elimination of cells and chromosomes revealed by GISH and AFLP analyses in a Brassica carinata × Orychophragmus violaceus cross. Ann Bot 97:993–998

    Article  PubMed  Google Scholar 

  • Jin WW, Melo JR, Nagaki K, Talbert PB, Henikoff S, Dawe RK, Jiang JM (2004) Maize centromeres: organization and functional adaptation in the genetic background of oat. Plant Cell 16:571–581

    Article  PubMed  CAS  Google Scholar 

  • Kleiman R (1990) Chemistry of new industrial oilseed crops [M]. In: Janick J, Simon JE (eds) Advances in new crops. Timber Press, Portland OR pp 196–203

    Google Scholar 

  • Leflon M, Eber F, Letanneur JC, Chelysheva L, Coriton O, Huteau V, Ryder CD, Barker G, Jenczewski E, Chevre AM (2006) Pairing and recombination at meiosis of Brassica rapa (AA) × Brassica napus (AACC) hybrids. Theor Appl Genet 113:1467–1480

    Article  PubMed  CAS  Google Scholar 

  • Leitch AR, Schwarzacher T, Jackson D, Leitch IJ (1994) Microscopy handbook No. 27. In situ hybridization: a practical guide. Bios Scientific, Oxford

    Google Scholar 

  • Li Z, Liu HL, Luo P (1995) Production and cytogenetics of intergeneric hybrids between Brassica napus and Orychophragmus violaceus. Theor Appl Genet 91: 131–136

    Google Scholar 

  • Li Z, Wu JG, Liu Y, Liu HL, Heneen WK (1998) Production and cytogenetics of intergeneric hybrids Brassica juncea × Orychophragmus violaceus and B. carinata × O. violaceus. Theor Appl Genet 96:251–265

    Article  Google Scholar 

  • Liu M, Li ZY (2007) Genome doubling and chromosome elimination with fragment recombination leading to the formation of Brassica rapa-type plants with genomic alterations in crosses with Orychophragmus violaceus. Genome (in press)

  • Liu B, Wendel JF (2003) Epigenetic phenomena and the evolution of plant allopolyploids. Mol Phylogenet Evol 29:365–379

    Article  PubMed  CAS  Google Scholar 

  • Liu B, Piao HM, Zhao PS, Zhao JH, Zhao R (1999) Production and molecular characterization of rice lines with introgressed traits from a wild species Zizania latifolia (Griseb). J Genet Breed 53:279–284

    CAS  Google Scholar 

  • Luo P, Fu HL, Lan ZQ, Zhou SD, Zhou HF, Luo Q (2003) Phytogenetics studies on intergeneric hybridization between Brassica napus and Matthiola incana. Acta Bot Sin 45(4):432–436

    Google Scholar 

  • Madlung A, Comai L (2004) The effect of stress on genome regulation and structure. Ann Bot 94:481–495

    Article  PubMed  CAS  Google Scholar 

  • McClintock B (1984) The significant of responses of the genome to challenge. Science 226:792–801

    Article  PubMed  CAS  Google Scholar 

  • Mitchell RJ (1997) Effects of pollination intensity on Lesquerella fendleri seed set: variation among plants. Oecologia 109:382–388

    Article  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassay with tobacco tissue cultures. Physiol Plant 15:473–479

    Article  CAS  Google Scholar 

  • Prakash S, Takahata Y, Kirti PB, Chopra V (1999) Cytogenetics. In: Gomez-Campo C (ed) Biology of Brassica coenospecies. Elsevier, Amsterdam, pp 59–106

    Chapter  Google Scholar 

  • Riera-Lizarazu O, Rines HW, Phillips RL (1996) Cytological and molecular characterization of oat × maize partial hybrids. Theor Appl Genet 93:123–135

    Article  CAS  Google Scholar 

  • Roetheli JC, Carlson KC, Kleiman R, Thompson AE, Dierig DA, Glaser LK, Blase MG, Goodell J (1991) Lesquerella as a source of hydroxyl fatty acids for industrial products. An assessment. USDA/CSRS Office of Agricultural Materials, Washington

  • Schroder-Pontoppidan M, Skarzhinskaya M, Dixelius C , Stymne S , Glimelius K (1999) Very long chain and hydroxylated fatty acids in offspring of somatic hybrids between Brassica napus and Lesquerella fendleri. Theor Appl Genet 99:108–114

    Article  CAS  Google Scholar 

  • Shan XH, Liu ZL, Dong ZY, Wang YM, Chen Y, Lin XY, Long LK, Han FP, Dong YS, Liu B (2005) Mobilization of the active mite transposons mPing and Pong in rice by introgression from wild rice (Zizania latifolia Griseb.). Mol Biol Evol 22: 976–990

    Article  PubMed  CAS  Google Scholar 

  • Skarzhinskaya M, Landgren M, Glimelius K (1996) Production of intertribal somatic hybrids between Brassca napus and lequerella fendleri (Gray) Wats. Theor Appl Genet 93:242–1250

    Article  Google Scholar 

  • Skarzhinskaya M, Fahleson J, Glimelius K, Mouras A (1998) Genome organization of Brassica napus and Lesquerella fendleri and analysis of their somatic hybrids using genomic in situ hybridisation. Genome 41:691–701

    Article  CAS  Google Scholar 

  • Snowdon RJ, Winter H, Diestel A, Sacristán MD (2000) Development and characterisation of Brassica napus-Sinapis arvensis addition lines exhibiting resistance to Leptosphaeria maculans. Theor Appl Genet 101:1008–1014

    Article  Google Scholar 

  • Thompson AE, Dierig DA (1988) Lesquerella—a new arid land industrial oil seed crop. EI Guayulero 10:16–18

    Google Scholar 

  • Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414

    Article  PubMed  CAS  Google Scholar 

  • Voss A, Snowdon RJ, Lühs W, Friedt W (2000) Intergeneric transfer of nematode resistance from Raphanus sativus into the Brassica napus genome. Acta Hortic 539:129–134

    Google Scholar 

  • Warwick SI, Francis A, La Fleche J (2000) Guide to the wild germplasm of Brassica and allied crops (tribe Brassiceae, Brassicaceae). 2nd ed. Agriculture and Agri-Food Canada, Eastern Cereal and Oilseed Research Centre, Ottawa

    Google Scholar 

  • Wang YP, Sonntag K, Rudloff E (2003) Development of rapeseed with high erucic acid content by asymmetric somatic hybridization between Brassica napus and Crambe abyssinica. Theor Appl Genet 106:1147–1155

    PubMed  CAS  Google Scholar 

  • Wang YM, Dong ZY, Zhang ZJ, Lin XY, Shen Y, Zhou DW, Liu B (2005) Extensive de novo genomic variation in rice induced by introgression from wild rice (Zizania latifolia Griseb.). Genetics 170:1945–1956

    Article  PubMed  CAS  Google Scholar 

  • Wang J, Tian L, Madlung A, Lee HS , Chen M, Lee JJ, Watson B, Kagochi T, Comai L, Chen ZJ (2004) Stochastic and epigenetic changes of expression in Arabidopsis polyploids. Genetics 167:1961–1973

    Article  PubMed  CAS  Google Scholar 

  • Zhong XB, Hans de Jong J, Zabel P (1996) Preparation of tomato meiotic pachytene and mitotic metaphase chromosomes suitable for fluorescence in situ hybridization (FISH). Chromosome Res 4:24–28

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The study was supported by “948” Project of Agricultural Ministry of China and by PCSIRT (IRT0442).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zai-Yun Li.

Additional information

Communicated by K. Toriyama.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Du, XZ., Ge, XH., Zhao, ZG. et al. Chromosome elimination and fragment introgression and recombination producing intertribal partial hybrids from Brassica napus × Lesquerella fendleri crosses. Plant Cell Rep 27, 261–271 (2008). https://doi.org/10.1007/s00299-007-0452-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-007-0452-2

Keywords

Navigation