Skip to main content
Log in

Application of Arabidopsis AGAMOUS second intron for the engineered ablation of flower development in transgenic tobacco

  • Genetic Transformation and Hybridization
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

To explore a new approach to generating reproductive sterility in transgenic plants, the barnase gene from Bacillus amyloliquefaciens was placed under the control of an 1853-bp nucleotide sequence from the 3′end of the second intron of Arabidopsis AGAMOUS and CaMV 35S (−60) minimal promoter [AG-I-35S (−60)::Barnase], and was introduced into tobacco through transformation mediated by Agrobacterium tumefaciens. All AG-I-35S (−60)::Barnase transgenic plants showed normal vegetative growth and 28% of the transgenic lines displayed complete ablation of flowering. Two transgenic lines, Bar-5 and Bar-15, were 98.1 and 98.4% sterile, respectively, as determined by seed production and germination. When controlled by AG-I-35S (−60) chimeric promoter, barnase mRNA was detected in the reproductive tissues of transgenic tobacco plants, but not in vegetative parts. This study presents the first application of an AG intron sequence in the engineered ablation of sexual reproduction in plants. The AG-I-35S (−60)::Barnase construct can be useful in diminishing pollen and seed formation in plants, providing a novel bisexual sterility strategy for interception of transgene escape and has other potentially commercial use for transgenic engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bowman JL, Drews GN, Meyerowitz EM (1991) Expression of the Arabidopsis floral homeotic gene agamous is restricted to specific cell types late in flower development. Plant Cell 3:749–758

    Article  PubMed  CAS  Google Scholar 

  • Busch MA, Bomblies K, Weigel D (1999) Activation of a floral homeotic gene in Arabidopsis. Science 285(5427):585–587

    Article  PubMed  CAS  Google Scholar 

  • Campisi L, Yang Y, Yi Y, Heilig E, Herman B, Cassista AJ, Allen DW, Xiang H, Jack T (1999) Generation of enhancer trap lines in Arabidopsis and characterization of expression patterns in the inflorescence. Plant J 17(6):699–707

    Article  PubMed  CAS  Google Scholar 

  • Cho HJ, Kim S, Kim M, Kim BD (2000) Production of transgenic male sterile tobacco plants with the cDNA encoding a ribosome inactivating protein in Dianthus sinensis L. Mol Cells 11:326–333

    Google Scholar 

  • Dale PJ, Clarke B, Fontes EM (2002) Potential for the environmental impact of transgenic crops. Nat Biotechnol 20(6):567–574

    Article  PubMed  CAS  Google Scholar 

  • De Block M, Debrouwer D, Moens T (1997) The development of a nuclear male sterility system in wheat. Expression of the barnase gene under the control of tapetum specific promoters. Theor Appl Genet 95:125–131

    Article  Google Scholar 

  • Deyholos MK, Sieburth LE (2000) Separable whorl-specific expression and negative regulation by enhancer elements within the AGAMOUS second intron. Plant Cell 12:1799–1810

    Article  PubMed  CAS  Google Scholar 

  • Dinneny JR, Yanofsky MF (2004) Floral development: an ABC gene chips in downstream. Curr Biol 14(19):840–841

    Article  Google Scholar 

  • Drews GN, Bowman JL, Meyerowitz EM (1991) Negative regulation of the Arabidopsis homeotic gene AGAMOUS by the APETALA2 product. Cell 65(6):991–1002

    Article  PubMed  CAS  Google Scholar 

  • Fang RX, Nagy F, Sivasubramaniam S, Chua NH (1989) Multiple cis regulatory elements for maximal expression of the cauliflower mosaic virus 35S promoter in transgenic plants. Plant Cell 1(1):141–150

    Article  PubMed  CAS  Google Scholar 

  • Goetz M, Godt DE, Guivarc’h A, Kahmann U, Chriqui D, Roitsch T (2001) Induction of male sterility in plants by metabolic engineering of the carbohydrate supply. Proc Natl Acad Sci USA 98(11):6522–6527

    Article  PubMed  CAS  Google Scholar 

  • Goldman MH, Goldberg RB, Mariani C (1994) Female sterile tobacco plants are produced by stigma-specific cell ablation. EMBO J 13(13):2976–2984

    PubMed  CAS  Google Scholar 

  • Guo XF, Wang LY, Yuan T (2005) Study on pollen morphology of 4 wild Herbaceous peony. Scientia silvae sinicae 9(5):184–186

    Google Scholar 

  • Hartley RW (1988) Barnase and barstar. Expression of its cloned inhibitor permits expression of a cloned ribonuclease. J Mol Biol 202(4):913–915

    Article  PubMed  CAS  Google Scholar 

  • Hofig KP, Moller R, Donaldson L, Putterill J, Walter C (2006) Towards male sterility in Pinus radiate—a stilbene synthase approach to genetically engineer nuclear male sterility. Plant Biotechnol J 4(3):333–433

    Article  PubMed  CAS  Google Scholar 

  • Hong RL, Hamaguchi L, Busch MA, Weigel D (2003) Regulatory elements of the floral homeotic gene AGAMOUS identified by phylogenetic footprinting and shadowing. Plant Cell 15(6):1296–1309

    Article  PubMed  CAS  Google Scholar 

  • Horsch RB, Fry JE, Hoffman NL, Eichholtz D, Rogers SG, Fraley RT (1985) A simple and general method of transferring genes into plants. Science 227:1229–1231

    Article  CAS  Google Scholar 

  • Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6(13):3901–3907

    PubMed  CAS  Google Scholar 

  • Kempin SA, Mandel MA, Yanofsky MF (1993) Conversion of perianth into reproductive organs by ectopic expression of the tobacco floral homeotic gene. NAG1. Plant Physiol 103(4):1041–1046

    Article  PubMed  CAS  Google Scholar 

  • Khan MS (2005) Plant biology: engineered male sterility. Nature 436(7052):783–785

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi K, Munemura I, Hinata K, Yamamura S (2006) Bisexual sterility conferred by the differential expression of barnase and barstar: a simple and efficient method of transgene containment. Plant Cell Rep 25:1347–1354

    Article  PubMed  CAS  Google Scholar 

  • Koltunow AM, Truettner J, Cox KH, Wallroth M, Goldberg RB (1990) Different temporal and spatial gene expression patterns occur during anther development. Plant Cell 12:1201–1224

    Article  Google Scholar 

  • Lannenpaa M, Hassinen M, Ranki A, Holtta-Vuori M, Lemmetyinen J, Keinonen K, Sopanen T (2005) Prevention of flower development in birch and other plants using a BpFULL1::BARNASE construct. Plant Cell Rep 24:69–78

    Article  PubMed  CAS  Google Scholar 

  • Lemmetyinen J, Keinonen K, Sopanen T (2004) Prevention of the flowering of a tree, silver birch. Mol Breed 13:243–249

    Article  CAS  Google Scholar 

  • Logemann E, Birkenbihl RP, Ulker B, Somssich IE (2006) An improved method for preparing Agrobacterium cells that simplifies the Arabidopsis transformation protocol. Plant Methods 2:16

    Article  PubMed  Google Scholar 

  • Liu JJ, Ekramoddoullah AKM (2003) Root-specific expression of a western white pine PR10 gene is mediated by different promoter regions in transgenic tobacco. Plant Mol Biol 52(1):103–120

    Article  PubMed  CAS  Google Scholar 

  • Liu J-J, Ekramoddoullah AKM, Podila GK (2003) A MADS-Box gene specifically expressed in the reproductive tissues of red pine (Pinus resinosa) is a homologue to floral homeotic genes with C-function in angiosperms. Physiol Mol Biol Plants 9:197–206

    CAS  Google Scholar 

  • Liu J-J, Ekramoddoullah AKM, Taylor D, Piggott N, Lane S, Hawkins B (2004) Characterization of Picg5 novel proteins associated with seasonal cold acclimation of white spruce (Picea glauca). Trees Struct Funct 18:649–657

    CAS  Google Scholar 

  • Liu JJ, Ekramoddoullah AK, Piggott N, Zamani A (2005) Molecular cloning of a pathogen/wound-inducible PR10 promoter from Pinus monticola and characterization in transgenic Arabidopsis plants. Planta 221(2):159–169

    Article  PubMed  CAS  Google Scholar 

  • Mariani C, De Beuckeleer M, Truettner J, Leemans J, Goldberg RB (1990) Induction of male sterility in plants by a chimaeric ribonuclease gene. Nature 347:737–741

    Article  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Nilsson O, Wu E, Wolfe DS, Weigel D (1998) Genetic ablation of flowers in transgenic Arabidopsis. Plant J 15:799–804

    Article  PubMed  CAS  Google Scholar 

  • Paddon CJ, Hartley RW (1985) Cloning, sequencing and transcription of an inactivated copy of Bacillus amyloliquefaciens extracellular ribonuclease (barnase). Gene 40(2–3):231–239

    Article  PubMed  CAS  Google Scholar 

  • Perez-Prat E, van Lookeren Campagne MM (2002) Hybrid seed production and the challenge of propagating male-sterile plants. Trends Plant Sci 7(5):199–203

    Article  PubMed  CAS  Google Scholar 

  • Roque E, Gomez MD, Ellul P, Wallbraun M, Madueno F, Beltran JP, Canas LA (2007) The PsEND1 promoter: a novel tool to produce genetically engineered male-sterile plants by early anther ablation. Plant Cell Rep 26(3):313–325

    Article  PubMed  CAS  Google Scholar 

  • Ruiz ON, Daniell H (2005) Engineering cytoplasmic male sterility via the chloroplast genome by expression of {beta}-ketothiolase. Plant Physiol 138(3):1232–1246

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual (3rd ed). Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Sieburth LE, Meyerowitz EM (1997) Molecular dissection of the AGAMOUS control region shows that cis elements for spatial regulation are located intragenically. Plant Cell 9(3):355–365

    Article  PubMed  CAS  Google Scholar 

  • Skinner JS, Meilan R, Ma C, Strauss SH (2003) The Populus PTD promoter imparts floral-predominant expression and enables high levels of floral-organ ablation in Populus, Nicotiana and Arabidopsis. Mol Breed 12:119–132

    Article  CAS  Google Scholar 

  • Straus SH, Rottmann WH, Brunner AM, Sheppard LA (1995) Genetic engineering of reproductive sterility in forest trees. Mol Breed 1:5–26

    Article  Google Scholar 

  • van der Meer IM, Stam ME, van Tunen AJ, Mol JN, Stuitje AR (1992) Antisense inhibition of flavonoid biosynthesis in petunia anthers results in male sterility. Plant Cell 4(3):253–262

    Article  PubMed  Google Scholar 

  • Wei H, Meilan R, Brunner AM, Skinner JS, Ma C, Gandhi HT, Strauss SH (2007) Field trial detects incomplete barstar attenuation of vegetative cytotoxicity in Populus trees containing a poplar LEAFY promoter::barnase sterility transgene. Mol Breed 19:69–85

    Article  CAS  Google Scholar 

  • Yanofsky MF, Ma H, Bowman JL, Drews GN, Feldman KA, Meyerowitz EM (1990) The protein encoded by the Arabidopsis homeotic gene agamous resembles transcription factors. Nature 346:35–39

    Article  PubMed  CAS  Google Scholar 

  • Yui R, Iketani S, Mikami T, Kubo T (2003) Antisense inhibition of mitochondrial pyruvate dehydrogenase E1 alpha subunit in anther tapetum causes male sterility. Plant J 34(1):57–66

    Article  PubMed  CAS  Google Scholar 

  • Zheng X, Deng W, Luo K, Duan H, Chen Y, McAvoy R, Song S, Pei Y, Li Y (2007) The cauliflower mosaic virus (CaMV) 35S promoter sequence alters the level and patterns of activity of adjacent tissue- and organ-specific gene promoters. Plant Cell Rep [Epub ahead of print]

Download references

Acknowledgments

This work was supported by grants from the Zhijiang Scientific and Technological Program (2004C32002) and the Hangzhou Scientific and Technological Program (200433248). We thank Drs. Rich Hunt (Canadian Forest Service) and Yu Xiang (Agriculture and Agri-Food Canada) for their critical reading and comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hui-Zhong Wang or Jun-Jun Liu.

Additional information

Communicated by P. Lakshmanan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, HZ., Hu, B., Chen, GP. et al. Application of Arabidopsis AGAMOUS second intron for the engineered ablation of flower development in transgenic tobacco. Plant Cell Rep 27, 251–259 (2008). https://doi.org/10.1007/s00299-007-0450-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-007-0450-4

Keywords

Navigation