Skip to main content
Log in

Cowpea ribonuclease: properties and effect of NaCl-salinity on its activation during seed germination and seedling establishment

  • Physiology and Biochemistry
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Pitiúba cowpea [Vigna unguiculata (L.) Walp] seeds were germinated in distilled water (control treatment) or in 100 mM NaCl solution (salt treatment), and RNase was purified from different parts of the seedlings. Seedling growth was reduced by the NaCl treatment. RNase activity was low in cotyledons of quiescent seeds, but the enzyme was activated during germination and seedling establishment. Salinity reduced cotyledon RNase activity, and this effect appeared to be due to a delay in its activation. The RNases from roots, stems, and leaves were immunologically identical to that found in cotyledons. Partially purified RNase fractions from the different parts of the seedling showed some activity with DNA as substrate. However, this DNA hydrolyzing activity was much lower than that of RNA hydrolyzing activity. The DNA hydrolyzing activity was strongly inhibited by Cu2+, Hg2+, and Zn2+ ions, stimulated by MgCl2, and slowly inhibited by EDTA. This activity from the most purified fraction was inhibited by increasing concentrations of RNA in the reaction medium. It is suggested that the major biological role of this cotyledon RNase would be to hydrolyze seed storage RNA during germination and seedling establishment, and it was discussed that it might have a protective role against abiotic stress during later part of seedling establishment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ashraf M, Harris PJC (2004) Potential biochemical indicators of salinity tolerance in plants. Plant Sci 166:3–16. doi:10.1016/j.plantsci.2003.10.024

    Article  CAS  Google Scholar 

  • Barker GR, Bray CM, Walter TJ (1974) The development of ribonuclease and acid phosphatase during germination of Pisum arvense. Biochem J 142:211–219

    PubMed  CAS  Google Scholar 

  • Bennett PA, Chrispeels MJ (1972) De novo synthesis of ribonuclease and 1,3-glucanase by aleurone cells of barley. Plant Physiol 49:445–447

    Article  PubMed  CAS  Google Scholar 

  • Bewley JD, Black M (1994) Seeds: physiology of development and germination, 2nd edn. Plenum Press, New York

    Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. doi:10.1016/0003-2697(76)90527-3

    Article  PubMed  CAS  Google Scholar 

  • Bryant JA, Greenway SC, West GA (1976) Development of nuclease activity in cotyledons of Pisum sativum L. Planta 130:137–140. doi:10.1007/BF00384410

    Article  CAS  Google Scholar 

  • Desai NA, Shankar V (2000) Purification and characterization of the single-strand-specific and guanylic-acid-preferential deoxyribonuclease activity of the extracellular nuclease from Basidiobolus haptosporus. Eur J Biochem 267:5123–5135. doi:10.1046/j.1432-1327.2000.01580.x

    Article  PubMed  CAS  Google Scholar 

  • Enéas Filho J, Oliveira Neto OB, Prisco JT, Gomes-Filho E, Nogueira CM (1995) Effects of salinity in vivo and in vitro on cotyledonary galactosidases from Vigna unguiculata (L.) Walp. during seed germination and seedling establishment. Rev Bras Fisiol Veg 7:135–142

    Google Scholar 

  • Flowers TJ (2004) Improving crop salt tolerance. J Exp Bot 55:307–319. doi:10.1093/jxb/erh003

    Article  PubMed  CAS  Google Scholar 

  • Franco OL, Gondim LAG, Bezerra KR, Guerra MEC, Lima CRFM, Enéas-Filho J, Prisco JT, Gomes-Filho E (2001) Partial purification and characterization of ribonucleases from roots, stem and leaves of cowpea. Rev Bras Fisiol Veg 13:357–364

    Article  Google Scholar 

  • Gomes-Filho E, Sodek L (1988) Effect of salinity on ribonuclease activity of Vigna unguiculata cotyledons during germination. J Plant Physiol 132:307–311

    CAS  Google Scholar 

  • Gomes-Filho E, Prisco JT, Campos FAP, Enéas-Filho J (1983) Effects of NaCl salinity in vivo and in vitro on ribonuclease activity of Vigna unguiculata cotyledons during germination. Physiol Plant 59:183–188. doi:10.1111/j.1399-3054.1983.tb00755.x

    Article  CAS  Google Scholar 

  • Gomes-Filho E, Lima CRFM, Enéas-Filho J, Campos FAP, Gondim LA, Prisco JT (1999) Purification and properties of a ribonuclease from cowpea cotyledons. Biol Plant 42:525–532. doi:10.1023/A:1002602712392

    Article  CAS  Google Scholar 

  • Green PJ (1994) The ribonucleases of higher plants. Annu Rev Plant Physiol Plant Mol Biol 45:421–445. doi:10.1146/annurev.pp.45.060194.002225

    Article  CAS  Google Scholar 

  • Greenway H, Munns R (1980) Mechanisms of salt tolerance in nonhalophytes. Annu Rev Plant Physiol 31:149–190. doi:10.1146/annurev.pp.31.060180.001053

    Article  CAS  Google Scholar 

  • Ho HC, Shiau PF, Liu FC, Chung JG, Chen LY (1998) Purification, characterization and complete amino acid sequence of nuclease C1 from Cunninghamella echinulata var. echinulata. Eur J Biochem 256:112–118. doi:10.1046/j.1432-1327.1998.2560112.x

    Article  PubMed  CAS  Google Scholar 

  • Kariu T, Sano K, Shimokawa H, Itoh R, Yamasaki N, Kimura M, (1998) Isolation and characterization of a wound-inducible ribonuclease from Nicotiana glutinosa leaves. Biosci Biotechnol 62:1144–1151

    Article  CAS  Google Scholar 

  • Kav NNV, Srivastava S, Goonewardene LL, Blade SF (2004) Proteome-level changes in the roots of Pisum sativum L. in response to salinity. Ann Appl Biol 145:217–230. doi:10.1111/j.1744-7348.2004.tb00378.x

    Article  CAS  Google Scholar 

  • Kazmierczak A, Knypl JS (1994) Endoribonuclease of Vicia faba ssp. minor radicles, and enhancement of its activity by chilling stress or abscissic acid. Physiol Plant 91:722–728. doi:10.1111/j.1399-3054.1994.tb03011.x

    Article  CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685. doi:10.1038/227680a0

    Article  PubMed  CAS  Google Scholar 

  • Mota I, Wong D (1969) Homologous and heterologous passive cutaneous anaphylactic activity of mouse anti-sera during the course of immunization. Life Sci 8:813–820. doi:10.1016/0024-3205(69)90099-X

    Article  PubMed  CAS  Google Scholar 

  • Munns R, James RA, Läuchli A (2006) Approaches to increasing the salt tolerance of wheat and other cereals. J Exp Bot 57:1025–1043. doi:10.1093/jxb/erj100

    Article  PubMed  CAS  Google Scholar 

  • Ovary Z (1958) Passive cutaneous anaphylaxis in the mouse. J Immunol 81:355–357

    PubMed  CAS  Google Scholar 

  • Pietrzak M, Cudney H, Maluszynski M (1980) Purification and properties of two ribonuclease and a nuclease from barley seeds. Biochim Biophys Acta 614:102–112. doi:10.1016/0005-2744(80)90171-0

    PubMed  CAS  Google Scholar 

  • Prisco JT, O’Leary J (1970) Osmotic and “toxic” effects of salinity on germination of Phaseolus vulgaris L. seeds. Turrialba 20:177–184

    Google Scholar 

  • Prisco JT, Vieira GHF (1976) Effects of NaCl salinity on nitrogenous compounds and proteases during germination of Vigna sinensis seeds. Physiol Plant 36:317–320. doi:10.1111/j.1399-3054.1976.tb02249.x

    Article  CAS  Google Scholar 

  • Prisco JT, Enéas-Filho J, Gomes-Filho E (1981) Effect of NaCl salinity on cotyledon starch mobilization during germination of Vigna unguiculata (L.) Walp seeds. Rev Bras Bot 4:63–71

    CAS  Google Scholar 

  • Przymusinski R, Rucinska R, Gwóźdź EA (2004) Increased accumulation of pathogenesis-related proteins in response of lupine roots to various abiotic stresses. Environ Exp Bot 52:53–61. doi:10.1016/j.envexpbot.2004.01.006

    Article  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Book 2. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Šindelářová M, Šindelár L, Burketová L (2000) Correlation between activity of ribonucleases and potato virus Y biosynthesis in tobacco plants. Physiol Mol Plant Pathol 57:191–199. doi:10.1006/pmpp.2000.0296

    Article  CAS  Google Scholar 

  • Srivastava S, Fristensky B, Kav NNV (2004) Constitutive expression of a PR10 protein enhances the germination of Brassica napus under saline conditions. Plant Cell Physiol 45:1320–1324. doi:10.1093/pcp/pch137

    Article  PubMed  CAS  Google Scholar 

  • Sugiyama M, Ito J, Aoyagi S, Fukuda H (2000) Endonucleases. Plant Mol Biol 44:387–397. doi:10.1023/A:1026504911786

    Article  PubMed  CAS  Google Scholar 

  • Thomas H, Ougham HJ, Wagstaff C, Stead AD (2003) Defining senescence and death. J Exp Bot 54:1127–1132. doi:10.1093/jxb/erg133

    Article  PubMed  CAS  Google Scholar 

  • Tuve TW, Anfinsen CB (1960) Preparation and properties of spinach ribonuclease. Sov Plant Physiol 23:882–889

    Google Scholar 

  • Tvorus EK (1976) Plant ribonucleases. Sov Plant Physiol 23:882–889

    Google Scholar 

  • Verdolin BA, Ficker SM, Faria ACM, Vaz NM, Carvalho CR (2001) Stabilization of serum antibody responses triggered by initial mucosal contact with the antigen independently of oral tolerance induction. Braz J Med Biol Res 34:211–219

    Article  PubMed  CAS  Google Scholar 

  • Wilson CM (1982) Plant nuclease: biochemistry and development of multiple molecular forms. In: Rattazzi MC (ed) Isoenzymes: current topics in biological and medical research, vol 5. Alan R. Liss, New York, pp 33–54

    Google Scholar 

  • Yupsanis T, Symeonidis L, Kalemi T, Moustaka H, Yupsani A (2004) Purification, properties and specificity of an endonuclease from Agropyron elongatum seedlings. Plant Physiol Biochem 42:795–802. doi:10.1016/j.plaphy.2004.09.002

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Ladaslav Sodek for reviewing the text, and acknowledge the financial support given by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and Fundação Cearense de Apoio ao Desenvolvimento Científico e Tecnológico (FUNCAP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enéas Gomes-Filho.

Additional information

Communicated by L. Jouanin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gomes-Filho, E., Lima, C.R.F.M., Costa, J.H. et al. Cowpea ribonuclease: properties and effect of NaCl-salinity on its activation during seed germination and seedling establishment. Plant Cell Rep 27, 147–157 (2008). https://doi.org/10.1007/s00299-007-0433-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-007-0433-5

Keywords

Navigation