Skip to main content
Log in

Identification of a bHLH-type G-box binding factor and its regulation activity with G-box and Box I elements of the PsCHS1 promoter

  • Genetics and Genomics
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

With the use of in vivo recombination theory, the screening time of yeast one-hybrid system was decreased in the present study. A basic helix-loop-helix (bHLH) protein PsGBF was successfully obtained from a glutathione (GSH)-induced pea cDNA library using the G-box cis-element of the PsCHS1 promoter as a bait. Electrophoretic mobility shift assay (EMSA) and β-galactosidase assay results suggested that PsGBF possesses both G-box-specific binding and transcription-activating activities. The specific interaction of PsGBF with G-box was further confirmed by in vivo transient expression assays in tobacco. The current study examined the combination effect of G-box with Box I elements in the interaction with PsGBF or OsMYC. The results indicated that PsGBF bound with the G-box, but not the Box I element. Moreover, this combination effect of G-box and Box I only associated with PsGBF but not with other bHLH-type proteins such as OsMYC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Baum K, Wienand U, Meier I (1999) Reduction of G-box binding factor DNA binding activity, but not G-box binding factor abundance, causes the downregulation of RBCS2 expression during early tomato fruit development. FEBS Lett 454:95–99

    Article  CAS  PubMed  Google Scholar 

  • Boter M, Ruiz-Rivero O, Abdeen A, Prat S (2004) Conserved MYC transcription factors play a key role in jasmonate signaling both in tomato and Arabidopsis. Genes Dev 18:1577–1591

    Article  CAS  PubMed  Google Scholar 

  • Chatel G, Montiel G, Pre M, Memelink J, Thiersault M, Saint-Pierre B, Doireau P, Gantet P (2003) CrMYC1, a Catharanthus roseus elicitor- and jasmonate-responsive bHLH transcription factor that binds the G-box element of the strictosidine synthase gene promoter. J Exp Bot 54:2587–2588

    Article  CAS  PubMed  Google Scholar 

  • Heinekamp T, Kuhlmann M, Lenk A, Strathmann A, Droge-Laser W (2002) The tobacco bZIP transcription factor BZI-1 binds to G-box elements in the promoters of phenylpropanoid pathway genes in vitro, but it is not involved in their regulation in vivo. Mol Genet Genomics 267:16–26

    Article  CAS  PubMed  Google Scholar 

  • Hua SB, Qiu M, Chan E, Zhu L, Luo Y (1997) Minimum length of sequence homology required for in vivo cloning by homologous recombination in yeast. Plasmid 38:91–96

    Article  CAS  PubMed  Google Scholar 

  • Huq E, Quail PH (2002) PIF4, a phytochrome-interacting bHLH factor, functions as a negative regulator of phytochrome B signaling in Arabidopsis. EMBO J 21:2441–2450

    Article  CAS  PubMed  Google Scholar 

  • Ito H, Fukuda Y, Murata K, Kimura A (1983) Transformation of intact yeast cells treated with alkali cations. J Bacteriol 153:163–168

    CAS  PubMed  Google Scholar 

  • Ito M, Ichinose Y, Kato H, Shiraishi T, Yamada T (1997) Molecular evolution and functional relevance of the chalcone synthase genes of pea. Mol Gen Genet 255:28–37

    Article  CAS  PubMed  Google Scholar 

  • Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6:3901–3907

    CAS  PubMed  Google Scholar 

  • Katagiri F, Chua NH (1992) Plant transcription factors: present knowledge and future challenges. Trends Genet 8:22–27

    Article  CAS  PubMed  Google Scholar 

  • Loake GJ, Faktor O, Lamb CJ, Dixon RA (1992) Combination of H-box [CCTACC(N)7CT] and G-box (CACGTG) cis-elements is necessary for feed-forward stimulation of a chalcone synthase promoter by the phenylpropanoid-pathway intermediate p-coumaric acid. Proc Natl Acad Sci U S A 89:9230–9234

    Article  CAS  PubMed  Google Scholar 

  • Nakagawa H, Ohmiya K, Hattori T (1996) A rice bZIP protein, designated OSBZ8, is rapidly induced by abscisic acid. Plant J 9:217–227

    Article  CAS  PubMed  Google Scholar 

  • Nantel A, Quatrano R (1996) Characterization of three rice basic/leucine zipper factors, including two inhibitors of EmBP-1 DNA binding activity. J Biol Chem 271:31296–31305

    Article  CAS  PubMed  Google Scholar 

  • Orr-Weaver TL, Szostak JW (1983) Yeast recombination: the association between double-strand gap repair and crossing-over. Proc Natl Acad Sci U S A 80:4417–4421

    Article  CAS  PubMed  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning, 2nd edn. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Seki H, Ichinose Y, Ito M, Shiraishi T, Yamada T (1997) Combined effects of multiple cis-acting elements in elicitor-mediated activation of PSCHS1 gene. Plant Cell Physiol 38:96–100

    CAS  Google Scholar 

  • Szostak JW, Orr-Weaver TL, Rothstein RJ, Stahl FW (1983) The double-strand-break repair model for recombination. Cell 33:25–35

    Article  CAS  PubMed  Google Scholar 

  • Weisshaar B, Jenkins GI (1998) Phenylpropanoid biosynthesis and its regulation. Curr Opin Plant Biol 1:251–257

    Article  CAS  PubMed  Google Scholar 

  • Williams ME, Foster R, Chua NH (1992) Sequences flanking the hexameric G-box core CACGTG affect the specificity of protein binding. Plant Cell 4:485–496

    Article  CAS  PubMed  Google Scholar 

  • Yamada T, Hachimoto H, Shiraishi T (1989) Suppression of pisatin, phenylalanine ammonia-lyase mRNA, and chalcone synthase mRNA accumulation by a putative pathogenicity factor from fungus Mycosphaerella pinodes. Mol Plant-Microbe Interact 2:256–261

    Google Scholar 

  • Yamada T, Sriprasertsak P, Kato H, Hashimoto T, Shimizu H, Shiraishi T (1994) Functional analysis of the promoters of phenylalanine ammonia-lyase genes in pea. Plant Cell Physiol 35:917–926

    CAS  PubMed  Google Scholar 

  • Yamaguchi-Shinozaki K, Shinozaki K (2005) Organization of cis-acting regulatory elements in osmotic- and cold-stress-responsive promoters. Trends Plant Sci 10:88–94

    Article  CAS  PubMed  Google Scholar 

  • Yang J, Lin R, Sullivan J, Hoecker U, Liu B, Xu L, Deng XW, Wang H (2005) Light regulates COP1-mediated degradation of HFR1, a transcription factor essential for light signaling in Arabidopsis. Plant Cell 17:804–821

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Prof. Fan Chen of the Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, for providing the plasmids pHISi, pLacZi and the yeast strain YM4271. This work was supported by grants from the National Key Basic Science ‘973’ Program (No. G2000016204), the Ministry of Education Doctor's Foundation Program (No. 20030001083) and the National Natural Science Foundation (Nos. 39980003 and 30500342) of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chengcai An.

Additional information

Communicated by J. C. Register

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qian, W., Tan, G., Liu, H. et al. Identification of a bHLH-type G-box binding factor and its regulation activity with G-box and Box I elements of the PsCHS1 promoter. Plant Cell Rep 26, 85–93 (2007). https://doi.org/10.1007/s00299-006-0202-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-006-0202-x

Keywords

Navigation