Skip to main content
Log in

Low light and low ammonium are key factors for guayule leaf tissue shoot organogenesis and transformation

  • Genetic transformation and hybridization
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

A new method has been developed for guayule tissue culture and transformation. Guayule leaf explants have a poor survival rate when placed on normal MS medium and under normal culture room light conditions. Low light and low ammonium treatment greatly improved shoot organogenesis and transformation from leaf tissues. Using this method, a 35S promoter driven BAR gene and an ubiquitin-3 promoter driven GUS gene (with intron) have been successfully introduced into guayule. These transgenic guayule plants were resistant to the herbicide ammonium-glufosinate and were positive to GUS staining. Molecular analysis showed the expected band and signal in all GUS positive transformants. The transformation efficiency with glufosinate selection ranged from 3 to 6%. Transformation with a pBIN19-based plasmid containing a NPTII gene and then selection with kanamycin also works well using this method. The ratio of kanamycin-resistant calli to total starting explants reached 50% in some experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Arumugam N, Bhojwani SS (1990) Somatic embryogenesis in tissue cultures of Podophyllum hexandrum. Can J Bot 68:487–491

    Google Scholar 

  • Babu KN, Anu A, Remashree AB, Praveen K (2000) Micropropagation of curry leaf tree. Plant Cell Tissue Organ Cult 61:199–203

    Article  CAS  Google Scholar 

  • Bacchetta L, Remotti PC, Bernardini C, Saccardo F (2003) Adventitious shoot regeneration from leaf explants and stem nodes of Lilium. Plant Cell Tissue Organ Cult 74:37–44

    Article  CAS  Google Scholar 

  • Bhagwat B, Lane WD (2004) In vitro shoot regeneration from leaves of sweet cherry (Prunus avium) ‘Lapins’ and ‘Sweetheart’. Plant Cell Tissue Organ Cult 78:173–181

    Article  CAS  Google Scholar 

  • Caboni E, Tonelli MG, Lauri P, D'Angeli S, Damiano C (1999) In vitro shoot regeneration from leaves of wild pear. Plant Cell Tissue Organ Cult 59:1–7

    Article  CAS  Google Scholar 

  • Cambecedes J, Duron M, Decourtye L (1991) Adventitious bud regeneration from leaf explants of the shrubby ornamental honeysuckle, Lonicera-nitida Wils. cv. ‘Maigrün’: effects of thidiazuron and 2,3,5-triiodobenzoic acid. Plant Cell Rep 10(9):471–474

    Article  CAS  Google Scholar 

  • Castillón J, Cornish K (2000) A simplified protocol for microprogation of guayule (Parthenium argentatum Gray). In Vitro Cell Dev Biol-Plant 36(3):215–219

    Article  Google Scholar 

  • Chen TY, Chen JT, Chang WC (2004) Plant regeneration through direct shoot bud formation from leaf cultures of Paphiopedilum orchids. Plant Cell Tissue Organ Cult 76:11–15

    Article  CAS  Google Scholar 

  • Cheng ZM, Schnurr JA, Kapaun JA (1998) Timentin as an alternative antibiotic for suppression of Agrobacterium tumefaciens in genetic transformation. Plant Cell Rep 17(8):646–649

    Article  CAS  Google Scholar 

  • Choi YE, Yang DC, Park JC, Soh WY, Choi KT (1998) Regenerative ability of somatic single and multiple embryos from cotyledons of Korean ginseng on hormone-free medium. Plant Cell Rep 17:544–551

    Article  CAS  Google Scholar 

  • Christensen AH, Quail PH (1996) Ubiquitin promoter-based vectors for high-level expression of selectable and/or screenable marker genes in monocotyledonous plants. Transg Res 5(3):213–218

    Article  CAS  Google Scholar 

  • Curtis IS, Power JB, Hedden P, Ward DA, Phillips A, Lowe KC, Davey MR (1999) A stable transformation system for the ornamental plant, Datura meteloides D. C.. Plant Cell Rep 18:554–560

    Article  CAS  Google Scholar 

  • Das G, Rout GR (2002) Direct plant regeneration from leaf explants of Plumbago species. Plant Cell Tissue Organ Cult 68:311–314

    Article  CAS  Google Scholar 

  • Dastoor MN, Schubert WW, Petersen GR (1981) Preliminary results of in vitro propagation of guayule. J Agric Food Chem 29:686–688

    Article  CAS  Google Scholar 

  • Datla RSS, Hammerlindl JK, Pelcher LE, Crosby WL, Selvaraj G (1991) A bifunctional fusion between beta-glucuronidase and neomycin phosphotransferase: a broad-spectrum marker enzyme for plant. Gene 101:239–246

    Article  PubMed  CAS  Google Scholar 

  • Dayal S, Lavanya M, Devi P, Sharma KK (2003) An efficient protocol for shoot regeneration and genetic transformation of pigeonpea [Cajanus cajan (L.) Millsp.] using leaf explants. Plant Cell Rep 21:1072–1079

    Article  PubMed  CAS  Google Scholar 

  • Dhaliwal HS, Ramesar-Fortner NS, Yeung EC, Thorpe TA (2003) Competence, determination, and meristemoid plasticity in tobacco organogenesis in vitro. Can J Bot 81:611–621

    Article  Google Scholar 

  • Dhar AC, Kavi Kishor PB, Rao AM (1989) In vitro propagation of guayule (Parthenium argentatum)-a rubber yielding shrub. Plant Cell Rep 8:489–492

    Article  CAS  Google Scholar 

  • Dodeman VL, Ducreux G, Kreis M (1997) Zygotic embryogenesis versus somatic embryogenesis. J Exp Bot 48(313):1493–1509

    Article  CAS  Google Scholar 

  • Dolcet-Sanjuan R, Mok DWS, Mok MC (1991) Plantlet regeneration from cultured leaves of Cydonia-oblonga L. (quince). Plant Cell Rep 10(5):240–242

    Article  Google Scholar 

  • Faure O, Diemer F, Moja S, Jullien F (1998) Mannitol and thidiazuron improve in vitro shoot regeneration from spearmint and peppermint leaf disks. Plant Cell Tissue Organ Cult 52:209–212

    Article  CAS  Google Scholar 

  • Finnie JF, Ackermann C, van Staden (1989) In vitro culture of guayule using pretreated seeds. HortScience 24:836–837

    Google Scholar 

  • Gamborg OL, Miller RA, Ojima K (1968) Nutrient requirement of suspension cultures of soybean root cells. Exp Cell Res 50:151–158

    Article  PubMed  CAS  Google Scholar 

  • Ganeshan S, Baga M, Harvey BL, Rossnagel BG, Scoles GJ, Chibbar RN (2003) Production of multiple shoots from thidiazuron-treated mature embryos and leaf-base/apical meristems of barley (Hordeum vulgare). Plant Cell Tissue Organ Cult 73(1):57–64

    Article  CAS  Google Scholar 

  • Garbarbo JE, Belknap WR (1994) Isolation of a ubiquitin-ribosomal protein gene (ubi3) from potato and expression of its promoter in transgenic plants. Plant Mol Biol 24:119–127

    Article  Google Scholar 

  • Hajdukiewicz P, Svab Z, Maliga P (1994) The small, versatile pPZP family of Agrobatium binary vectors for plant transformation. Plant Mol Biol25:989–994

    Article  PubMed  CAS  Google Scholar 

  • Hood EE, Helmer GL, Fraley RT, Chilton M (1986) The hypervirulence of Agrobacterium tumefaciens A281 is encoded a region of pTBo542 outside of T-DNA. J Bacteriol 168:1291–1301

    PubMed  CAS  Google Scholar 

  • Ibrahim R, Mondelaers W, Debergh PC (1998) Effects of X-irradiation on adventitious bud regeneration from in vitro leaf explants of Rosa hybrida. Plant Cell Tissue Organ Cult 54:37–44

    Article  Google Scholar 

  • Jeffson RA (1987) Assaying chimeric genes in plants: the GUS gene fusion system. Plant Mol Biol Rep 5:387–405

    Article  Google Scholar 

  • Koroch A, Juliani HR, Kapteyn J, Simon JE (2002) In vitroy regeneration of Echinacea purpurea from leaf explants. Plant Cell Tissue Organ Cult 69:79–83

    Article  CAS  Google Scholar 

  • Lazzeri PA, Hildebrand DF, Collins GB (1987) Soybean somatic embryogenesis: effects of nutritional, physical and chemical factors. Plant Mol Biol Rep 10:209–220

    CAS  Google Scholar 

  • Lo KH, Giles KL, Sawhney VK (1997) Acquisition of competence for shoot regeneration in leaf discs of Saintpaulia ionanthaxconfusa hybrids (African violet) cultured in vitro. Plant Cell Rep 16:416–420

    CAS  Google Scholar 

  • Michalczuk B, Michalczuk L (2000) The effect of light quality on regeneration rate and plantlet development in transgenic petunia ‘revolution’ (surfinia type). ISHS Acta Horticulturae 530: International Symposium on Methods and Markers for Quality Assurance in Micropropagation

  • Michler CH, Bauer EO (1991) High frequency somatic embryogenesis from leaf tissue of Populu-spp, Plant Sci 77:111–118

    Article  CAS  Google Scholar 

  • Michler CH, Lineberger RD (1987) Effects of light on somatic embryo development and abscisic acid levels in carrot suspension cultures. Plant Cell Tissue Organ Cult 11:189–208

    Article  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–479

    Article  CAS  Google Scholar 

  • Nowak B, Miczyński K, Hudy L (2004) Sugar uptake and utilisation during adventitious bud differentiation on in vitro leaf explants of ‘Wegierka Zwykła’ plum (Prunus Domestica). Plant Cell Tissue Organ Cult 76:255–260

    Article  CAS  Google Scholar 

  • Nuutila AM, Villiger C, Oksman-Caldentey KM (2002) Embryogenesis and regeneration of green plantlets from oat (Avena Sativa L.) leaf-base segments: influence of nitrogen balance, sugar and auxin. Plant Cell Rep 20(12):1156–1161

    Article  CAS  Google Scholar 

  • Orozco-Cardenas M, Ryan CA (1999) Hydrogen peroxide is generated systemically in plant leaves by wounding and systemin via the octadecanoid pathway. Proc Natl Acad Sci USA. 96(11):6553–6557

    Article  PubMed  CAS  Google Scholar 

  • Pan Z-Q, Ho J-K, Feng Q, Huang D-S, Backhaus RA (1996) Agrobacterium-mediated transformation and regeneration of guayule. Plant Cell Tissue Organ Cult 46:143–150

    Article  CAS  Google Scholar 

  • Park SU, Chae YA, Facchini PJ (2003) Genetic transformation of the figwort, Scrophularia buergeriana Miq., an Oriental medicinal plant. Plant Cell Rep 21:1194–1198

    Article  PubMed  CAS  Google Scholar 

  • Pellegrineschi A (1997) In vitro plant regeneration via organogenesis of cowpea [Vigna unguiculata (L.) Walp.]Plant Cell Rep 17:89–95

    Article  CAS  Google Scholar 

  • Pereira AMS, Bertoni BW, Appezzato-da-Glória B, Araujo ARB, Januário AH, Lourenço MV, França SC (2000) Micropropagation of Pothomorphe umbellata via direct organogenesis from leaf explants. Plant Cell Tissue Organ Cult 60:47–53

    Article  Google Scholar 

  • Radin DN, Behl HM, Proksch P, Rodriguez E (1982) Rubber and other hydrocarbons produced in tissue cultures of guayule (Parthenium argentatum). Plant Sci Lett 26:301–310

    Article  CAS  Google Scholar 

  • Ratushnyak Y, Rudas VA, Piven NM (1990) Regeneration of Lycium-barbarum L. plants from leaf tissue callus culture and callus protoplasts. Plant Cell Rep 9(2):84–87

    Article  Google Scholar 

  • Reddy PS, Rodrigues R, Rajasekharan R (2001) Shoot organogenesis and mass propagation of Coleus forskohlii from leaf derived callus. Plant Cell Tissue Organ Cult 66:183–188

    Article  CAS  Google Scholar 

  • Rey HY, Scocchi AM, Gonzalez AM, Mroginski LA (2000) Plant regeneration in Arachis pintoi (Leguminosae) through leaf culture. Plant Cell Rep 19:856–862

    Article  CAS  Google Scholar 

  • Rotino GL, Gleddie S (1990) Transformation of eggplant Solanum-melongena L. using a binary Agrobacterium-tumefaciens vector. Plant Cell Rep 9(1):26–29

    Article  CAS  Google Scholar 

  • Rugini E, Muganu M (1998) A novel strategy for the induction and maintenance of shoot regeneration from callus derived from established shoots of apple [Malus × Domestica Borkh.] cv. Golden Delicious. Plant Cell Rep 17:581–585

    Article  CAS  Google Scholar 

  • Trautmann IA, Visser JH (1990) An in vitro study of organogenesis in guayule (Parthenium argentatum Gray). Plant Sci 72:275–281

    Article  CAS  Google Scholar 

  • Vancanneyt G, Schmidt R, O'Connor-Sanchez A (1990) Construction of an intron-containing marker gene: splicing of the intron in transgenic plants and its use in monitoring early events in Agrobacterium-mediated plant transformation. Mol Gen Genet 220:245–250

    Article  PubMed  CAS  Google Scholar 

  • Smith MK (1983) In vitro propagation of guayule (Parthenium argentatum Gray). Plant Sci Lett 31:275–282

    Article  CAS  Google Scholar 

  • Staba EJ, Nygaad BG (1983) In vitro culture of guayule. Z Pflanzenphysiol Bd 109:371–378

    CAS  Google Scholar 

  • Veatch ME, Ray DT, Cornish K (2003) Growth, rubber and resin evaluation of two year old transgenic guayule. Association for the advancement of industrial crops conference. p 10

  • Verhagen SA, Wann SR (1989) Norway spruce somatic embryogenesis: high_frequency initiation from light cultured mature embryos. Plant Cell Tissue Organ Cult 16:103–112

    Article  Google Scholar 

  • Vila SK, Gonzalez AM, Rey HY, Mroginski LA (2003) In vitro plant regeneration of Melia azedarach L.: shoot organogenesis from leaf explants. 47:13–19

  • Wang CT, Wei ZM (2004) Embryogenesis and regeneration of green plantlets from wheat (Triticum aestivum) leaf base. Plant Cell Tissue Organ Cult 77:149–156

    Article  CAS  Google Scholar 

  • Yadav PBS, Padmaja V (2003) Shoot organogenesis and plantlet regeneration from leaf segments of pigeonpea. Plant Cell Tissue Organ Cult 73:197–200

    Article  Google Scholar 

  • Zavala ME, Biesboer DD, Mahlberg PG (1982) Callus induction and organogenesis in cultured tissue of Parthenium argentatum. Phytomorphology 32:340–344

    Google Scholar 

  • Zuker A, Ahroni A, Shejtman H, Vainstein A (1997) Adventitious shoot regeneration from leaf explants of Gypsophila paniculata L.. Plant Cell Rep 16:775–778

    Article  CAS  Google Scholar 

Download references

Acknowledgement

We thank William Crosby for providing pBI426 that contained the double 35S promoter and alfalfa mosaic virus enhancer (Datla et al. 1991); Dr William Belknap for providing the construct that contained the Ubiquitin-3 promoter and the first ubiquitin coding sequence (Garbarino and Belknap 1994); Dr Peter Quail for providing the BAR gene (Christensen and Quail 1996); Dr Pal Maliga for providing pPZP200 (Hajdukiewicz et al. 1994); Dr Elizabeth Hood for providing Agrobacterium strain EHA101; Dr Willmitzer for providing the intron containing GUS gene (Vancanneyt el al. 1990). We also thank Dr. James Thomson and Dr. Grace Chen for their critical reviews of this manuscript

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katrina Cornish.

Additional information

Communicated by G. C. Phillips

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dong, N., Montanez, B., Creelman, R.A. et al. Low light and low ammonium are key factors for guayule leaf tissue shoot organogenesis and transformation. Plant Cell Rep 25, 26–34 (2006). https://doi.org/10.1007/s00299-005-0024-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-005-0024-2

Keywords

Navigation