Skip to main content
Log in

From axenic spore germination to molecular farming

One century of bryophyte in vitro culture

  • Review
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

The first bryophyte tissue culture techniques were established almost a century ago. All of the techniques that have been developed for tissue culture of seed plants have also been adapted for bryophytes, and these range from mere axenic culture to molecular farming. However, specific characteristics of bryophyte biology—for example, a unique regeneration capacity—have also resulted in the development of methodologies and techniques different than those used for seed plants. In this review we provide an overview of the application of in vitro techniques to bryophytes, emphasising the differences as well as the similarities between bryophytes and seed plants. These are discussed within the framework of physiological and developmental processes as well as with respect to potential applications in plant biotechnology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Allsopp A (1957) Controlled differentiation in cultures of two liverworts. Nature 179:681–682

    Google Scholar 

  • Asakawa Y (1995) Chemical constituents of the bryophytes. In : Herz W, Kirby GW, Moore RE, Steglich W, Tamm C (eds) Progress in the chemistry of organic natural products, vol. 65. Springer, Berlin Heidelberg New York, pp 1–618

    Google Scholar 

  • Asakawa Y (2004) Chemosystematics of the Hepaticae. Phytochemistry 65:623–669

    Article  CAS  PubMed  Google Scholar 

  • Ashton NW, Cove DJ (1977) The isolation and preliminary characterisation of auxotrophic and analogue resistant mutants of the moss, Physcomitrella patens. Mol Gen Genet 154:87–95

    Article  Google Scholar 

  • Ashton NW, Champagne CEM, Weiler T, Verkoczy LK (2000) The bryophyte Physcomitrella patens replicates extrachromosomal transgenic elements. New Phytol 146:391–402

    Article  Google Scholar 

  • Becker H (2001) Moose und ihre biologisch aktiven Stoffe. Z Phytother 22:152–158

    Google Scholar 

  • Becquerel P (1906) Germination des spores d’Atrichum undulatum et d’Hypnum velutinum. Nutrition et développement de leurs protonéma dans des milieux stérilisés. Rev gén bot 18:49–67

    Google Scholar 

  • Benson-Evans K (1961) Environmental factors and bryophytes. Nature 191:255–260

    Google Scholar 

  • Benson-Evans K (1964) Physiology of the reproduction of bryophytes. Bryologist 67:431–445

    Google Scholar 

  • Binding H (1966) Regeneration und Verschmelzung nackter Laubmoos Protoplasten. Z Pflanzenphysiol 55:305–321

    Google Scholar 

  • Bopp M, Bhatla SC (1990) Physiology of sexual reproduction in mosses. Crit Rev Plant Sci 9:317–327

    Google Scholar 

  • Boyd PJ, Hall J, Cove DJ (1988) An airlift fermenter for the culture of the moss Physcomitrella patens. In: Glime JM (ed) Methods in bryology. Proc Bryol Methods Workshop. The Hattori Bot Lab, Nichinan, pp 41–46

  • Burch J (2003) Some mosses survive cryopreservation without prior pre-treatment. Bryologist 106:270–277

    Google Scholar 

  • Burch J, Wilkinson T (2002) Cryopreservation of protonemata of Ditrichum cornubicum (Paton) comparing the effectiveness of four cryoprotectant pretreatments. Cryoletters 23:197–208

    CAS  PubMed  Google Scholar 

  • Carlson PS, Smith HH, Dearing RD (1972) Parasexual interspecific plant hybridization. Proc Natl Acad Sci USA 69:2292–2294

    Google Scholar 

  • Cho SH, Chung YS, Cho SK, Rim YW, Shin JS (1999) Particle bombardment mediated transformation and GFP expression in the moss Physcomitrella patens. Mol Cells 9:14–19

    CAS  PubMed  Google Scholar 

  • Christianson ML (1998) A simple protocol for cryopreservation of mosses. Bryologist 101:32–35

    Google Scholar 

  • Decker EL, Reski R (2004) The moss bioreactor. Curr Opin Plant Biol 7:166–170

    Article  CAS  PubMed  Google Scholar 

  • Doran PM (1999) Design of mixing systems for plant cell suspensions in stirred reactors. Biotechnol Prog 15:319–335

    Article  CAS  PubMed  Google Scholar 

  • Doran PM (2000) Foreign protein production in plant tissue cultures. Curr Opin Biotechnol 11:199–204

    Article  CAS  PubMed  Google Scholar 

  • Egener T, Granado J, Guitton MC, Hohe A, Holtorf H, Lucht JM, Rensing S, Schlink K, Schulte J, Schween G, Zimmermann S, Duwenig E, Rak B, Reski R (2002) High frequency of phenotypic deviations in Physcomitrella patens plants transformed with a gene-disruption library. BMC Plant Biol 2:6

    Article  PubMed  Google Scholar 

  • Esch H, Hartmann E, Cove D, Wada M, Lamparter T (1999) Phytochrome-controlled phototropism of protonemata of the moss Ceratodon purpureus: physiology of the wild type and class 2 ptr-mutants. Planta 209:290–298

    Article  CAS  PubMed  Google Scholar 

  • Förster K (1927) Die Wirkung äusserer Faktoren auf Entwicklung und Gestaltbildung bei Marchantia polymorpha. Planta 3:325–390

    Google Scholar 

  • Girke T, Schmidt H, Zähringer U, Reski R, Heinz E (1998) Identification of a novel Δ6-acyl-group desaturase by targeted gene disruption in Physcomitrella patens. Plant J 15:39–48

    Article  CAS  PubMed  Google Scholar 

  • Goebel K (1908) Einleitung in die experimentelle Morphologie der Pflanzen. BG Teubner, Leipzig

    Google Scholar 

  • Grimsley NH, Withers LA (1983) Cryopreservation of cultures of the moss Physcomitrella patens. Cryoletters 4:251–258

    CAS  Google Scholar 

  • Grout BWW (1995) Introduction to the in vitro preservation of plant cells, tissues and organs. In: Grout B (ed) Genetic preservation of plant cells in vitro. Springer, Berlin Heidelberg New York, pp 1–20

    Google Scholar 

  • Haberlandt G (1902) Culturversuche mit isolierten Pflanzenzellen. Sitz-Ber Math-Nat Kl Kais Akad Wiss Wien 111:69–92

    Google Scholar 

  • Hadeler B, Scholz S, Reski R (1995) Gelrite and agar differently influence cytokinin-sensitivity of a moss. J Plant Physiol 146:369–371

    CAS  Google Scholar 

  • Handa AK, Johri MM (1976) Cell differentiation by 3′,5′-cyclic AMP in a lower plant. Nature 259:480–482

    CAS  Google Scholar 

  • Hata J, Taya M (2000) Evaluation of carbohydrate utilization and photosynthetic carbon dioxide fixation in photomixotrophic culture of Marchantia polymorpha. J Chem Eng Jpn 33:277–284

    Article  CAS  Google Scholar 

  • Hata JI, Toyo-Oka Y, Taya M, Tone S (1997) A strategy for control of light intensity in suspension culture of photoautotrophic liverwort cells, Marchantia paleacea var. diptera. J Chem Eng Jpn 30:315–320

    CAS  Google Scholar 

  • Hata J, Taya M, Tani K, Nasu M (1999) Photoautotrophic cultures of the host and transformed cells of Marchantia polymorpha under controlled incident light intensity. J Biosci Bioeng 88:582–585

    Article  CAS  Google Scholar 

  • Hata J, Hua Q, Yang C, Shimizu K, Taya M (2000a) Characterization of energy conversion based on metabolic flux analysis in mixotrophic liverwort cells, Marchantia polymorpha. Biochem Eng J 6:65–74

    Article  CAS  PubMed  Google Scholar 

  • Hata J, Hirai H, Taya M (2000b) Reduction in carbon dioxide emission, and enhancement of cell yield by control of light intensity in photomixotrophic batch culture of Marchantia polymorpha. J Biosci Bioeng 89:288–291

    Article  CAS  Google Scholar 

  • Hohe A, Reski R (2002) Optimisation of a bioreactor culture of the moss Physcomitrella patens for mass production of protoplasts. Plant Sci 163:69–74

    Article  CAS  Google Scholar 

  • Hohe A, Reski R (2003) A tool for understanding homologous recombination in plants. Plant Cell Rep 21:1135–1142

    Article  CAS  PubMed  Google Scholar 

  • Hohe A, Decker EL, Gorr G, Schween G, Reski R (2002a) Tight control of growth and cell differentiation in photoautotrophically growing moss Physcomitrella patens bioreactor cultures. Plant Cell Rep 20:1135–1140

    Article  CAS  Google Scholar 

  • Hohe A, Rensing SA, Mildner M, Lang D, Reski R (2002b) Day length and temperature strongly influence sexual reproduction and expression of a novel MADS-box gene in the moss Physcomitrella patens. Plant Biol 4:595–602

    Article  CAS  Google Scholar 

  • Hohe A, Egener T, Lucht J, Holtorf H, Reinhard C, Schween G, Reski R (2004) An improved and highly standardised transformation procedure allows efficient production of single and multiple targeted gene knockouts in a moss, Physcomitrella patens. Curr Genet 44:339–347

    Article  CAS  PubMed  Google Scholar 

  • Hughes JG (1962) The effect of day-length on the development of the sporophyte of Polytrichum aloides Hedw. and P. piliferum Hedw. New Phytol 61:266–273

    Google Scholar 

  • Irifune K, Ono K, Takahashi M, Murakami H, Morikawa H (1996) Stable transformation of cultures cells of the liverwort Marchantia polymorpha by particle bombardment. Transgen Res 5:337–341

    CAS  Google Scholar 

  • Jenkins GI, Cove DJ (1983) Light requirements for regeneration of protoplasts of the moss Physcomitrella patens. Planta 157:39–45

    Article  Google Scholar 

  • Johri MM, Desai S (1973) Auxin regulation of caulonema formation in moss protonema. Nat New Biol 245:223–224

    CAS  PubMed  Google Scholar 

  • Kammerer W, Cove DJ (1996) Genetic analysis of the effects of re-transformation of transgenic lines of the moss Physcomitrella patens. Mol Gen Genet 250:380–382

    Article  CAS  PubMed  Google Scholar 

  • Katoh K (1983) Kinetics of photoautotrophic growth of Marchantia polymorpha cells in suspension culture. Physiol Plant 59:242–248

    Google Scholar 

  • Katoh K (1988) Isolation and Maintenance of callus and cell suspension cultures of bryophytes. In: Glime JM (ed) Methods in bryology. Proc Bryol Methods Workshop. The Hattori Bot Lab, Nichinan, pp 99–106

  • Kern VD, Sack FD (1999) Irradiance-dependent regulation of gravitropism by red light in protonema of the moss Ceratodon purpureus. Planta 209:299–307

    Article  CAS  PubMed  Google Scholar 

  • Knoop B (1984) Development in bryophytes. In: Dyer AF, Duckett JG (eds) The experimental biology of bryophytes. Academic, London, pp 143–176

    Google Scholar 

  • Knop W (1884) Bereitung einer concentrirten Nährstofflösung für Pflanzen. Landw Versuchsstat 30:292–294

    Google Scholar 

  • Knudson LC (1922) Non-symbiotic germination of orchid seeds. Bot Gaz 73:1–25

    Article  Google Scholar 

  • Koprivova A, Stemmer C, Altmann F, Hoffmann A, Kopriva S, Gorr G, Reski R, Decker EL (2004) Targeted knockouts of Physcomitrella lacking plant-specific immunogenic N-glycans. Plant Biotechnol J 2:517–523

    Article  Google Scholar 

  • Kreh W (1909) Über die Regeneration der Lebermoose. Nova Acta Acad Caesar Leop Carol 90:213–301

    Google Scholar 

  • Krens FA, Molendijk L, Wullems GJ, Schilperoort RA (1982) In vitro transformation of plant protoplasts with Ti-plasmid DNA. Nature 296:72–74

    CAS  Google Scholar 

  • Küster E (1909) Über die Verschmelzung nackter Protoplasten. Ber Dtsch Bot Gesell 27:589–598

    Google Scholar 

  • Laibach F (1925) Das Taubwerden von Bastardsamen und künstliche Aufzucht früh absterbender Bastardembryonen. Z Bot 17:417–459

    Google Scholar 

  • Laimer M, Rücker W (eds) (2003) Plant tissue culture, 100 years since Gottlieb Haberlandt. Springer, Vienna New York

    Google Scholar 

  • Lal M (1984) The culture of bryophytes including apogamy, apospory, parthenogenesis and protoplasts. In: Dyer AF, Duckett JG (eds) The experimental biology of bryophytes. Academic, London, pp 97–115

    Google Scholar 

  • Leverone L, Pence VC (1993) Desiccation Tolerance and cryopreservation of temperate mosses and liverworts. Plant Physiol 102[Suppl]:S154–S154

    Google Scholar 

  • Lilienstern M (1927) Physiologisch-morphologische Untersuchung über Marchantia polymorpha L. in Reinkultur. Ber Dtsch Bot Ges 45 H 7:447–453

    Google Scholar 

  • Lucumi A, Fleck P, Posten C (2003) Scale-down of photobioreactors from moss cell suspension cultures. In: Sorvari S (ed) Proc 1st Int Conf Bioreactor Technol Cell Tissue Cult Biomed Applic. Tampere, Finland, pp 175–187

  • Mues R (2000) Chemical constituents and biochemistry. In: Shaw AJ, Goffinet B (eds) Bryophyte biology. Cambridge University Press, Cambridge, pp 150–181

    Google Scholar 

  • Nasu M, Tani K, Hattori C, Honda M, Shimaoka T, Yamaguchi N, Katoh K (1997) Efficient transformation of Marchantia polymorpha that is haploid and has very small genome DNA. J Ferment Bioeng 84:519–523

    Article  CAS  Google Scholar 

  • Nishiyama T, Hiwatashi Y, Sakakibara K, Kato M, Hasebe M (2000) Tagged mutagenesis and gene-trap in the moss, Physcomitrella patens by shuttle mutagenesis. DNA Res 7:9–17

    CAS  PubMed  Google Scholar 

  • Ohta Y, Katoh K, Miyake K (1977) Establishment and growth characteristics of a cell suspension culture of Marchantia polymorpha L. with high chlorophyll content. Planta 136:229–232

    CAS  Google Scholar 

  • Oliver MJ, Velten J, Wood AJ (2000) Bryophytes as experimental models for the study of environmental stress tolerance: Tortula ruralis and desiccation-tolerance in mosses. Plant Ecol 151:73–84

    Article  Google Scholar 

  • Ono K, Ohyama K, Gamborg OL (1979) Regeneration of the liverwort Marchantia polymorpha L. from protoplasts isolated from cell suspension culture. Plant Sci Lett 14:225–229

    Google Scholar 

  • Pence VC (1998) Cryopreservation of bryophytes: the effects of abscisic acid and encapsulation dehydration. Bryologist 101:278–281

    CAS  Google Scholar 

  • Potrykus I, Spangenberg G (1995) Gene transfer to plants. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Proctor M (2001) Patterns of desiccation tolerance and recovery in bryophytes. Plant Growth Regul 35:147–156

    Article  CAS  Google Scholar 

  • Reski R (1998) Physcomitrella and Arabidopsis: the David and Goliath of reverse genetics. Trends Plant Sci 3:209–210

    Article  Google Scholar 

  • Reski R (1999) Molecular genetics of Physcomitrella. Planta 208:301–309

    Article  CAS  Google Scholar 

  • Reutter K, Reski R (1996) Production of a heterologous protein in bioreactor cultures of fully differentiated moss plants. Plant Tissue Cult Biotechnol 2:142–147

    Google Scholar 

  • Rudolph H, Kirchhoff M, Gliesmann S (1988) Sphagnum culture techniques. In: Glime JM (ed) Methods in bryology. The Hattori Bot Lab, Nichinan, pp 25–34

  • Sajc L, Grbisic D, Vunjak-Novakovic G (2000) Bioreactors for plant engineering: an outlook for further research. Biochem Eng J 4:89–99

    Article  Google Scholar 

  • Sawahel W, Onde S, Knight CD, Cove DJ (1992) Transfer of foreign DNA into Physcomitrella patens protonemal tissue using a gene gun. Plant Mol Biol Rep 10:314–315

    Google Scholar 

  • Schaefer DG (2001) Gene targeting in Physcomitrella patens. Curr Opin Plant Biol 4:138–141

    Article  Google Scholar 

  • Schaefer DG (2002) A new moss genetics: targeted mutagenesis in Physcomitrella patens. Annu Rev Plant Biol 53:477–501

    Article  CAS  PubMed  Google Scholar 

  • Schaefer D, Zryd JP (1997) Efficient gene targeting in the moss Physcomitrella patens. Plant J 11:1195–1206

    Article  CAS  PubMed  Google Scholar 

  • Schaefer D, Zryd JP, Knight C, Cove DJ (1991) Stable transformation of the moss Physcomitrella patens. Mol Gen Genet 226:418–424

    CAS  PubMed  Google Scholar 

  • Schieder O (1974) Selektion einer somatischen Hybride nach Fusion von Protoplasten auxotropher Mutanten von Sphaerocarpos donnellii Aust. Z Pflanzenphysiol 74:357–365

    Google Scholar 

  • Schieder O, Wenzel G (1972) Enzymatic isolation of protoplasts from the liverwort Sphaerocarpos donnellii Aust. Z Naturforsch 27:479–480

    CAS  Google Scholar 

  • Schulte J, Reski R (2004) High-throughput cryopreservation of 140000 Physcomitrella patens mutants. Plant Biol 6:119–127

    Article  CAS  PubMed  Google Scholar 

  • Schween G, Hohe A, Koprivova A, Reski R (2003) Effects of nutrients, cell density and culture techniques on protoplast regeneration and early protonema development in a moss, Physcomitrella patens. J Plant Physiol 160:209–212

    CAS  PubMed  Google Scholar 

  • Schwuchow JM, Kern VD, Sack FD (2002) Tip-growing cells of the moss Ceratodon purpureus are gravitropic in high-density media. Plant Physiol 130:2095–2100

    Article  CAS  PubMed  Google Scholar 

  • Servettaz C (1913) Recherches expérimentales sur le développement et la nutrition des mousses en milieux stérilisés. Ann Sci Nat Bot Biol Veg 17:111–223

    Google Scholar 

  • Sharma S, Jayaswal RK, Johri MM (1979) Cell-density-dependent changes in the metabolism of chloronema cell cultures. Plant Physiol 64:154–158

    CAS  Google Scholar 

  • Spiess LD, Lippincott BB, Lippincott JA (1984) Role of the moss cell-wall in gametophore formation induced by Agrobacterium tumefaciens. Bot Gaz 145:302–307

    Article  Google Scholar 

  • Stephan J (1928) Der Einfluss von Lichtqualität und –quantität (einschliesslich ultrarot) auf das Wachstum der Brutkörper von Marchantia polymorpha. Planta 6:510–518

    Google Scholar 

  • Strepp R, Scholz S, Kruse S, Speth V, Reski R (1998) Plant nuclear gene knockout reveals a role in plastid division for the homolog of the bacterial cell division protein FtsZ, an ancestral tubulin. Proc Natl Acad Sci USA 95:4368–4373

    Article  CAS  PubMed  Google Scholar 

  • Stumm I, Meyer Y, Abel WO (1975) Regeneration of the moss Physcomitrella patens (Hedw.) from isolated protoplasts. Plant Sci Lett 5:113–118

    Google Scholar 

  • Takebe I, Labib G, Melchers G (1971) Regeneration of whole plants from isolated mesophyll protoplasts of tobacco. Naturwissenschaften 58:318–320

    Google Scholar 

  • Takenaka M, Yamaoka S, Hanajiri T, Shimizu-Ueda Y, Yamato KT, Fukuzawa H, Ohyama K (2000) Direct transformation and plant regeneration of the haploid liverwort Marchantia polymorpha L. Transgen Res 9:179–185

    Article  CAS  Google Scholar 

  • Takeuchi M, Matsushima H, Sugawara Y (1980) Long-term freeze preservation of protoplasts from carrot and Marchantia. Cryoletters 1:519–524

    CAS  Google Scholar 

  • Thümmler F, Schuster H, Bonenberger J (1992) Expression of oat phyA cDNA in the moss Ceratodon purpureus. Photochem Potobiol 56:771–776

    Google Scholar 

  • Vöchting H (1885) Über die Regeneration der Marchantiaceen. Jb Wiss Bot 16:367–414

    Google Scholar 

  • Voth PD, Hamner KC (1940) Responses of Marchantia polymorpha to nutrient supply and photoperiod. Bot Gaz 102:169–205

    Article  CAS  Google Scholar 

  • Wang TL, Horgan R, Cove D (1981) Cytokinins from the moss Physcomitrella patens. Plant Physiol 68:735–738

    CAS  Google Scholar 

  • Wann FB (1925) Some of the factors involved in the sexual reproduction of Marchantia polymorpha. Am J Bot 12:307–318

    Google Scholar 

  • Wenzel G, Schieder O (1973) Regeneration of isoslated protoplasts from nicotinic-acid deficient mutants of the liverwort Sphaerocarpos donnellii Aust. Plant Sci Lett 1:421–423

    Article  CAS  Google Scholar 

  • Whatley MH, Spiess LD (1977) Role of bacterial lipopolysaccharide in attachment of Agrobacterium to moss. Plant Physiol 60:765–766

    CAS  Google Scholar 

  • Wilbert E (1991) Biotechnologische Studien zur Massenkultur von Moosen unter besonderer Berücksichtigung des Arachidonsäurestoffwechsels. Thesis, University of Mainz, Germany

  • Wood A, Oliver MJ, Cove DJ (2000) Bryophytes as model systems. Bryologist 103:128–133

    Google Scholar 

  • Yamaoka S, Takenaka M, Hnajiri T, Shimizu-Ueda Y, Nishida H, Yamato KT, Fukuzawa H, Ohyama K (2004) A mutant with constituent sexual organ development in Marchantia polymorpha L. Sex Plant Reprod 16:253–257

    Article  Google Scholar 

  • Zeidler M, Hartmann E, Hughes J (1999) Transgene expression in the moss Ceratodon purpureus. J Plant Physiol 154:641–650

    CAS  Google Scholar 

Download references

Acknowledgements

Figure 2d was kindly provided by Alexander Lucumi and Iris Perner (Karlsruhe University, Institute for Mechanical Engineering and Mechanics, Bioprocess Engineering)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Annette Hohe.

Additional information

Communicated by P.P. Kumar

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hohe, A., Reski, R. From axenic spore germination to molecular farming. Plant Cell Rep 23, 513–521 (2005). https://doi.org/10.1007/s00299-004-0894-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-004-0894-8

Keywords

Navigation