Skip to main content
Log in

Biolistic transformation of highly regenerative sugar beet (Beta vulgaris L.) leaves

  • Genetic Transformation and Hybridization
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Leaves of greenhouse-grown sugar beet (Beta vulgaris L.) plants that were first screened for high regeneration potential were transformed via particle bombardment with the uidA gene fused to the osmotin or proteinase inhibitor II gene promoter. Stably transformed calli were recovered as early as 7 weeks after bombardment and GUS-positive shoots regenerated 3 months after bombardment. The efficiency of transformation ranged from 0.9% to 3.7%, and stable integration of the uidA gene into the genome was confirmed by Southern blot analysis. The main advantages of direct bombardment of leaves to regenerate transformed sugar beet include (1) a readily available source of highly regenerative target tissue, (2) minimal tissue culture manipulation before and after bombardment, and (3) the overall rapid regeneration of transgenic shoots.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

GUS:

β-Glucuronidase

IBA:

Indole-3-butyric acid

Km:

Kanamycin

uidA :

β-Glucuronidase gene

References

  • Altpeter F, Vasil V, Srivastava V, Stöger E, Vasil I (1996) Accelerated production of transgenic wheat (Triticum aestivum L.) plants. Plant Cell Rep 16:12–17

    Article  CAS  Google Scholar 

  • Bosemark NO (1993) Genetics and breeding. In: Cooke DA, Scott RK (eds) The sugar beet crop: science into practice. Chapmann & Hall, London, pp 37–66

    Google Scholar 

  • Cassells AC, Curry RF (2001) Oxidative stress and physiological, epigenetic and genetic variability in plant tissue culture: implications for micropropagators and genetic engineers. Plant Cell Tissue Organ Cult 64:145–157

    Article  CAS  Google Scholar 

  • Christou P (1995) Strategies for variety-independent genetic transformation of important cereals, legumes and woody species utilizing particle bombardment. Euphytica 85:13–27

    Article  Google Scholar 

  • D’Halluin K, Bossut M, Bonne E, Mazur B, Leemans J, Botterman J (1992) Transformation of sugarbeet (Beta vulgaris L.) and evaluation of herbicide resistance in transgenic plants. Biotechnology 10:309–314

    Article  CAS  Google Scholar 

  • Everett NP, Robinson KEP, Mascarenhas D (1987) Genetic engineering of sunflower (Helianthus annuus L.). Biotechnology 5:1201–1204

    Article  CAS  Google Scholar 

  • FAO (2000) Production Yearbook. FAO Statistics Series, No. 163, Rome

  • Fry JE, Barnason AR, Hinchee M (1991) Genotype-independent transformation of sugarbeet using Agrobacterium tumefaciens. In: Hallick RB (ed) Molecular biology of plant growth and development. Third Int Congr Int Soc Plant Mol Biol. Tuckon, USA Int Soc Plant Mol Biol, Athens, p 384

  • Hall RD, Riksen-Grunisma T, Weyens GJ, Rosquin IJ, Denys PN, Evans IJ, Lathouwers JE, Lefebvre MP, Dunwell JM, van Tunen A, Krens FA (1996) A high efficiency technique for the generation of transgenic sugarbeet from stomatal guard cells. Nat Biotechnol 14:1133–1138

    Article  CAS  PubMed  Google Scholar 

  • Haymes KM (1996) A DNA mini-prep method suitable for a plant breeding program. Plant Mol Biol Rep 14:280–284

    CAS  Google Scholar 

  • Hisano H, Kimoto Y, Hayakawa H, Takeichi J, Domae T, Hashimoto R, Abe J, Asano S, Kanazawa A, Shimamoto Y (2004) High frequency Agrobacterium-mediated transformation and plant regeneration via direct shoot formation from leaf explants in Beta vulgaris and Beta maritima. Plant Cell Rep 22:910–918

    Article  CAS  PubMed  Google Scholar 

  • Ingersoll JC, Heutte TM, Owens LD (1996) Effect of promoter-leader sequences on transient expression of reporter gene chimeras biolistically transferred into sugarbeet (Beta vulgaris L.) suspension cells. Plant Cell Rep 15:836–840

    Article  CAS  Google Scholar 

  • Ivic SD, Smigocki AC (2001) Evaluation of the biolistic transformation method for commercially important sugar beet breeding lines. In: Proc 31st Meet Am Soc Sugar Beet Technol, Denver, p 207

  • Ivic SD, Smigocki AC (2003) Transformation of sugar beet cell suspension cultures. In Vitro Cell Dev Biol Plant 39:573–577

    Article  CAS  Google Scholar 

  • Ivic SD, Sicher RC, Smigocki AC (2001) Growth habit and sugar accumulation in sugar beet (Beta vulgaris L.) transformed with a cytokinin biosynthesis gene. Plant Cell Rep 20:770–773

    Article  CAS  Google Scholar 

  • Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6:3901–3907

    CAS  PubMed  Google Scholar 

  • Kononowicz AK, Nelson DE, Singh NK, Hasegawa PM, Bressan RA (1992) Regulation of the osmotin gene promoter. Plant Cell 4:513–524

    Article  CAS  PubMed  Google Scholar 

  • Krens FA, Trifonova A, Keizer LCP, Hall RD (1996) The effect of exogenously applied phytohormones on gene transfer efficiency in sugarbeet (Beta vulgaris L.). Plant Sci 116:97–106

    Article  CAS  Google Scholar 

  • Lewellen RT (2000) Registration of multiple disease resistant C69 sugarbeet germplasm. Crop Sci 40:1511

    Google Scholar 

  • Lindsey K, Gallois P (1990) Transformation of sugarbeet (Beta vulgaris L.) by Agrobacterium tumefaciens. J Exp Bot 41:529–536

    CAS  Google Scholar 

  • Menzel G, Harloff HJ, Jung C (2003) Expression of bacterial poly(3-hydroxybutyrate) synthesis genes in hairy roots of sugar beet (Beta vulgaris L.). Appl Microbiol Biotechnol 60:571–576

    CAS  PubMed  Google Scholar 

  • Mullins MG (1990) Agrobacterium-mediated genetic transformation of grapevines: transgenic plants of Vitis rupestris Scheele and buds of Vitis vinifera L. Biotechnology 8:1041–1045

    Article  CAS  Google Scholar 

  • O’Kennedy MM, Burger JT, Berger DK (2001) Transformation of elite white maize using the particle inflow gun and detailed analysis of a low-copy integration event. Plant Cell Rep 20:721–730

    Article  CAS  Google Scholar 

  • Panella L (1999) Registration of FC709-2 and FC727 sugarbeet germplasm resistant to Rhizoctonia root rot and Cercospora leaf spot. Crop Sci 39:298–299

    Google Scholar 

  • Reddy MSS, Dinkins RD, Collins GB (2003) Gene silencing in transgenic soybean plants transformed via particle bombardment. Plant Cell Rep 21:676–683

    CAS  PubMed  Google Scholar 

  • Ritchie GA, Short KC, Davey MR (1989) In vitro shoot regeneration from callus, leaf axils and petioles of sugar beet (Beta vulgaris L.). J Exp Bot 40:277–283

    Google Scholar 

  • Sanford JC, Smith FD, Russell JA (1993) Optimizing biolistic process for different biological applications. Methods Enzymol 217:483–509

    Article  CAS  PubMed  Google Scholar 

  • Saunders JW (1998) Registration of REL-1 and REL-2 sugarbeet germplasms for tissue culture genetic manipulations. Crop Sci 38:901–902

    Google Scholar 

  • Saunders JW, Doley WP (1986) One step shoot regeneration from callus of whole plant leaf explants of sugarbeet lines and a somaclonal variant for in vitro behavior. J Plant Physiol 124:473–479

    CAS  Google Scholar 

  • Sawant SV, Singh PK, Tuli R (2000) Pretreatment of microprojectiles to improve the delivery of DNA in plant transformation. Biotechniques 29:246–248

    CAS  PubMed  Google Scholar 

  • Setiawan A, Koch G, Barnes SR, Jung C (2000) Mapping quantitative trait loci (QTLs) for resistance to Cercospora leaf spot disease (Cercospora beticola Sacc.) in sugar beet (Beta vulgaris L.). Theor Appl Genet 100:1176–1182

    Google Scholar 

  • Sevenier R, Hall RD, van der Meer IM, Hakkert HJC, van Tunen AJ, Koops AJ (1998) High level fructan accumulation in a transgenic sugar beet. Nat Biotechnol 16:843–846

    Article  CAS  PubMed  Google Scholar 

  • Smigocki AC, Campbell LG, Wozniak CA (2003) Leaf extracts from cytokinin-overproducing transgenic plants kill sugarbeet root maggot larvae. J Sugar Beet Res 40:197–207

    Google Scholar 

  • Smith GA, Ruppel EG (1980) Registration of FC607 and FC607 CMS sugarbeet germplasm. Crop Sci 20:419

    Google Scholar 

  • Snyder GW, Ingersoll JC, Smigocki AC, Owens LD (1999) Introduction of pathogen defense genes and a cytokinin biosynthetic gene into sugarbeet (Beta vulgaris L.) by Agrobacterium or particle bombardment. Plant Cell Rep 18:829–834

    Article  CAS  Google Scholar 

  • Zhang CL, Chen DF, McCormac AC, Scott NW, Elliott MC, Slater A (2001) Use of the GFP reporter gene as a vital marker for Agrobacterium-mediated transformation of sugar beet (Beta vulgaris L.). Mol Biotechnol 17:109–117

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ann C. Smigocki.

Additional information

Communicated by K.K. Kamo

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ivic-Haymes, S.D., Smigocki, A.C. Biolistic transformation of highly regenerative sugar beet (Beta vulgaris L.) leaves. Plant Cell Rep 23, 699–704 (2005). https://doi.org/10.1007/s00299-004-0873-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-004-0873-0

Keywords

Navigation