This study provided additional information about the limited accuracy of the new 2017 diagnostic criteria to distinguish the severity of symptoms between patients with a diagnosis of hEDS and HSD and the prevalence of extra-articular manifestations: detection of bone fragility, neuropathic pain and MCAS symptoms. The results highlighted the possibility to add another more specific symptom to hEDS: severity of spontaneous bleeding. This study showed that a coordinated physical therapy program could improve patient symptoms similarly in hEDS and HSD, for about half of the patients.
More pain, disability, and spontaneous bleeding in hEDS than HSD patients, but the 2017 diagnostic criteria were not related to other disabling manifestations
In our cohort, hEDS patients presented a more severe phenotype than did HSD patients: significantly more pain, disability and hypermobility. These results were not surprising. Per the definition, patient disability is related to the Beighton score (diagnostic criterion 1) and pain to criterion 2C: musculoskeletal involvement. However, we found a significantly higher prevalence of severity of spontaneous bleeding in hEDS than HSD patients. Traditionally, the bleeding symptom was associated with the vascular form of EDS. However, patients with abnormal hypermobility experience more abnormal bleeding [29]. The bleeding is related to platelet dysfunction or mast cell activation. Our patients showed a high prevalence of symptoms suggesting MCAS. Nevertheless, this symptom of spontaneous bleeding was not considered sensitive and specific enough to be included in the 2017 diagnostic criteria [11].
The 2017 criteria were proposed to avoid neglecting a potentially severe disorder and to limit overemphasizing a non-pathological variation from the norm [15]. Thus, the 2017 criteria of hEDS limits the diagnosis to patients with clear Mendelian transmission or those with extra-articular and systemic manifestation. Yet, some authors doubt that the more severely affected patients are correctly identified [16, 17, 30, 31]. In our study, with our severity score, we confirmed that more severely affected patients (more pain or disability) were well detected by the 2017 diagnostic criteria. Nevertheless, Copetti et al. [17] (105 patients, 58 hEDS) and Mc Gillis et al. [16] (131 patients, 10 hEDS), found the opposite: the distinction between hEDS and HSD diagnosis based on the 2017 diagnostic criteria did not reveal any differences in severity when defined based on the intensity of pain, autonomic symptoms, functional difficulties, fatigue, attention deficit and quality of life.
We recorded piezogenic papules separately, added as a diagnostic feature in 2017 [11], based on a small study [32]. As for Mc Gillis et al. [16], piezogenic papules were no more frequent in hEDS than HSD patients in our larger hEDS cohort. Thus, our study found that patients with a diagnosis of hEDS did not have a significantly more severe phenotype than HSD patients.
hEDS and HSD patients showed a high prevalence of extra-articular involvement: suspected bone involvement, neuropathic pain or mast cell disorders
The 2017 diagnostic criteria could not distinguish patients with more extra-articular manifestations, bone fragility, neuropathic pain, or suspected MCAS. The prevalence of anamnestic bone fragility was high (23% for a median age of 40) in our cohort, when considering that in the normal population of women aged ≥ 50 years in Europe, the prevalence of osteoporosis is 22.5% [33]. We recorded bone fragility as a non-trauma fracture or BMD value lower than normal value. The Eller-Vainicher et al. [18] study of 50 Caucasian patients with hEDS or classical EDS (diagnosed with the older criteria of hEDS), mean age 40.3 ± 5.9 years, 72% women, reported a prevalence of 32% of bone fragility. The authors evaluated bone health based on bone quantity (with BMD measured by dual x-ray absorptiometry) and bone quality (evaluated by Trabecular Bone Score) in addition to the detection of vertebral fracture (screened with conventional spinal radiography in lateral and anteroposterior projection T4–L4 assessment). In a review, Formenti et al. [34] proposed to screen all patients with hEDS by dual X-ray absorptiometry. Finally, Banica et al. [35] suggested that bone fragility in hEDS or HSD patients could be linked to lower mechanical strain. None of these prior studies suggested a difference between hEDS and HSD patients, but a high prevalence of bone involvement seems confirmed.
The neuropathic pain detection score was frequently positive in our cohort, almost 50% in both groups. Chronic pain is an important problem for HSD/hEDS patients [36]. Neuropathic pain has been described as related to small-fiber neuropathy in HSD/hEDS [19] as well as to the well-known nerve luxation/subluxation related to the hypermobility. A diagnosis is important because the therapeutic approach is different: medication for primary neuropathic pain versus proprioceptive control or surgery for hypermobility-related pain.
In approximately 45% of patients, symptoms were compatible with MCAS. The GoodHope study [16] found the same prevalence of MCAS in both hEDS and HSD groups, but approximately only 25%. Since this publication, other articles reported a link between hEDS and MCAS [37, 38], and patient EDS association reported this possible association (https://www.ehlers-danlos.com). Therefore, it could be a bias of over-positivity of MCAS symptoms in our cohort. As suggested by Jesudas et al. [29], we found a positive association between spontaneous bleeding and suspected MCAS.
Coordinated physical therapy management could improve symptoms similarly in both patient groups
In our study, we proposed the same management for hEDS and HSD patients based on an initial assessment by a physiotherapist and a semi-standardized reeducation program, coached by a physiotherapist and then progressively trusted to the patients themselves (self-care). Strong evidence for physical therapy is lacking [39], yet it is the mainstay of management [8, 40, 41]. Generally, to improve, treat and prevent musculoskeletal manifestations of joint hypermobility, the facets of education, active participation and active physical therapy intervention are recommended. [23, 24, 40,41,42,43]. Hope et al. [44] showed that all hEDS and HSD patients had higher frequency and severity of subjective health complaints than matched controls. The main explanation was low understanding of the patient’s illness and associated symptoms and moderate beliefs that the illness could be kept under control through self-management, reeducation or treatment.
With our program, more than 50% of patients showed improved articular symptoms at the end of follow-up. In 2013, Bathen et al. [45] showed improvement in perceived performance of daily activities, muscle strength and endurance in 12 women via a cognitive behavioral-based intervention including teaching easy exercises to perform at home. We also pragmatically based our program on the need to perform the rehabilitation at home but included a more ambitious step in our clinic to further reassure and empower our patients.
The diagnostic category (hEDS vs. HSD) does not appear to be a prognostic factor for outcomes after physical therapy. Good clinical practice for hEDS and HSD must integrate a coordinated physical therapy program, if possible within a network of experienced caregivers, which could become the standard of care. The only factor that seemed to influence a favorable evolution was family history of hypermobility. We have no straightforward explanation for this finding. Perhaps, empowerment is facilitated by the presence of the disability in a parent or a child in the same family. Also, having another family member with the same diagnosis could induce motivation for rehabilitation.
Among patients lost to follow-up, we found lower CSS-16 scores and a higher proportion of HSD diagnoses than hEDS. We can reasonably assume that the severity of symptoms and a clear diagnosis are motivational factors for attending a tertiary center.
Strengths and limitations
Being the only coordinated center in the French speaking part of Switzerland, our sample is representative of the hypermobile and hEDS/HSD patients in this region with a global population of 2 million. Reassuringly, the proportion of women [16, 17], mean age, prevalence of pain, and fatigue are similar to that in prior studies [16, 17, 40]. With this dataset, we can confirm that hEDS is not rare [46]: 42% of the patients referred to the hypermobility-dedicated consultation met the 2017 diagnostic criteria. Furthermore, for the first time, a coordinated physical management program resulted in improvement in slightly more than 50% of patients. These results are encouraging and motivating when we know that instability is the main cause of pain and deteriorated quality of life in hypermobile patients.
Our study has limitations. This was a monocentric study in a small country, yet as described above, it is the referral center, which holds its importance. The scores used were mostly subjective or detection tools, which are convenient to use in a clinical setting. The CSS-16 is not validated, and its sensitivity and specificity for hEDS or compared to other disorders such as fibromyalgia is not known. A validation and comparison with other cohorts is needed, given the utility and easy application of this score. The global evolution is a composite self-report regarding pain, disability, injury and empowerment. We did not record evolution reports for these elements separately, and therefore could not study whether pain was decreased, for example. This plan was chosen on the basis of clinical relevance (global function favored over individual item scores). Unfortunately, we were not able to assess the reason for lost to follow-up because it was the patients’ decision not to return to clinical care, and it would have been invasive to ask them the reason for this. The reason could be a bias in the results we present (underestimation of effects with more loss of patients with great improvement or over-estimation with more loss of patients with deterioration).
Conclusion
Based on a clinical severity scale of 16 items, in our cohort, patients with hEDS fulfilling the 2017 diagnostic criteria and HSD patients showed globally similar severity scores except for pain, motricity problems and spontaneous bleeding, and similar spectrum of extra-articular manifestations. In addition, improvement was ≥ 50% with a coordinated physical therapy program in both groups. Altogether, these results add weight to the proposition to consider hEDS/HSD as a single entity that requires the same treatments.