Skip to main content

Advertisement

Log in

A retrospective cohort study to assess PET-CT findings and clinical outcomes in Takayasu arteritis: does 18F-fluorodeoxyglucose uptake in arteries predict relapses?

  • Imaging
  • Published:
Rheumatology International Aims and scope Submit manuscript

Abstract

The objective of this study is to investigate the use of PET-CT scan with 18F-fluorodeoxyglucose (18F-FDG) as a method to predict outcomes in patients with Takayasu arteritis (TAK), as well as to analyze associations between 18F-FDG PET-CT findings with disease relapses, sustained remission, new angiographic lesions, ischemic events, and changes in therapy for TAK. At baseline assessment, 36 TAK patients underwent 18F-FDG PET-CT scan and maximal standardized uptake value (SUVmax) in arteries ≥ 1.3 was predictive for clinical disease activity. Thirty-two TAK patients were then followed-up for a median 83.5 months. Twenty-three (71.9%) patients developed clinical relapses and new arterial lesions were observed in 14 (43.8%) cases. Disease relapses [85.0% vs. 50.0%, p = 0.049; odds ratio (OR): 5.667; 95% confidence interval (95 CI): 1.067–30.085] and the need for changing immunosuppressive therapy (85.0% vs. 41.7%, p = 0.018; OR: 7.933; 95CI: 1.478–42.581) were more frequently found in patients with SUVmax ≥ 1.3 at baseline compared with those presenting SUVmax < 1.3. No associations were found between SUVmax ≥ or < 1.3 in large arteries at baseline and the development of ischemic events, sustained remission or new angiographic lesions. In multivariate analysis, associations between baseline SUVmax ≥ 1.3 and disease relapses were not independent (hazard ratio: 1.07; 95 CI 0.39–2.92; p = 0.892). In conclusion, arterial SUVmax is marginally associated with disease relapses and with the need to change therapy in TAK. 18F-FDG uptake in large arteries is not associated with the development of new arterial lesions in TAK.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. de Souza AW, de Carvalho JF (2014) Diagnostic and classification criteria of Takayasu arteritis. J Autoimmun 48–49:79–83. https://doi.org/10.1016/j.jaut.2014.01.012

    Article  CAS  PubMed  Google Scholar 

  2. Savioli B, Abdulahad WH, Brouwer E, Kallenberg CGM, de Souza AWS (2017) Are cytokines and chemokines suitable biomarkers for Takayasu arteritis? Autoimmun Rev 16:1071–1078. https://doi.org/10.1016/j.autrev.2017.07.023

    Article  CAS  PubMed  Google Scholar 

  3. Gribbons KB, Ponte C, Carette S et al (2019) Patterns of arterial disease in Takayasu's arteritis and giant cell arteritis. Arthritis Care Res (Hoboken). https://doi.org/10.1002/acr.24055

    Article  Google Scholar 

  4. Direskeneli H (2017) Clinical assessment in Takayasu's arteritis: major challenges and controversies. Clin Exp Rheumatol 35:189–193

    PubMed  Google Scholar 

  5. Maksimowicz-McKinnon K, Hoffman GS (2007) Takayasu arteritis: what is the long-term prognosis? Rheum Dis Clin N Am 33:777–786. https://doi.org/10.1016/j.rdc.2007.07.014

    Article  Google Scholar 

  6. Kerr GS, Hallahan CW, Giordano J et al (1994) Takayasu arteritis. Ann Intern Med 120:919–929. https://doi.org/10.7326/0003-4819-120-11-199406010-00004

    Article  CAS  PubMed  Google Scholar 

  7. Maksimowicz-McKinnon K, Clark TM, Hoffman GS (2007) Limitations of therapy and a guarded prognosis in an American cohort of Takayasu arteritis patients. Arthritis Rheum 56:1000–1009. https://doi.org/10.1002/art.22404

    Article  PubMed  Google Scholar 

  8. Freitas DS, Camargo CZ, Mariz HA, Arraes AE, de Souza AW (2012) Takayasu arteritis: assessment of response to medical therapy based on clinical activity criteria and imaging techniques. Rheumatol Int 32:703–709. https://doi.org/10.1007/s00296-010-1694-9

    Article  PubMed  Google Scholar 

  9. Ureten K, Oztürk MA, Onat AM et al (2004) Takayasu's arteritis: results of a university hospital of 45 patients in Turkey. Int J Cardiol 96:259–264. https://doi.org/10.1016/j.ijcard.2003.07.017

    Article  PubMed  Google Scholar 

  10. Henes JC, Müller M, Krieger J et al (2008) [18F] FDG-PET/CT as a new and sensitive imaging method for the diagnosis of large vessel vasculitis. Clin Exp Rheumatol 26:S47–S52

    CAS  PubMed  Google Scholar 

  11. Aydin SZ, Yilmaz N, Akar S et al (2010) Assessment of disease activity and progression in Takayasu's arteritis with disease extent index-Takayasu. Rheumatology (Oxford) 49:1889–1893. https://doi.org/10.1093/rheumatology/keq171

    Article  PubMed  Google Scholar 

  12. Misra R, Danda D, Rajappa SM, Indian Rheumatology Vasculitis (IRAVAS) group et al (2013) Development and initial validation of the Indian Takayasu Clinical Activity Score (ITAS2010). Rheumatology (Oxford) 52:1795–1801. https://doi.org/10.1093/rheumatology/ket128

    Article  PubMed  Google Scholar 

  13. Seyahi E (2017) Takayasu arteritis: an update. Curr Opin Rheumatol 29:51–56. https://doi.org/10.1097/BOR.0000000000000343

    Article  PubMed  Google Scholar 

  14. Barra L, Kanji T, Malette J, Pagnoux C, CanVasc (2018) Imaging modalities for the diagnosis and disease activity assessment of Takayasu's arteritis: a systematic review and meta-analysis. Autoimmun Rev 17:175–187. https://doi.org/10.1016/j.autrev.2017.11.021

    Article  PubMed  Google Scholar 

  15. Juweid ME, Cheson BD (2006) Positron-emission tomography and assessment of cancer therapy. N Engl J Med 354:496–507. https://doi.org/10.1056/NEJMra050276

    Article  CAS  PubMed  Google Scholar 

  16. Sadeghi MM (2015) (18)F-FDG PET and vascular inflammation: time to refine the paradigm? J Nucl Cardiol 22:319–324. https://doi.org/10.1007/s12350-014-9917-1

    Article  PubMed  PubMed Central  Google Scholar 

  17. Arnaud L, Haroche J, Malek Z et al (2009) Is (18)F-fluorodeoxyglucose positron emission tomography scanning a reliable way to assess disease activity in Takayasu arteritis? Arthritis Rheum 60:1193–1200. https://doi.org/10.1002/art.24416

    Article  PubMed  Google Scholar 

  18. Lee SG, Ryu JS, Kim HO et al (2009) Evaluation of disease activity using F-18 FDG PET-CT in patients with Takayasu arteritis. Clin Nucl Med 34:749–752. https://doi.org/10.1097/RLU.0b013e3181b7db09

    Article  PubMed  Google Scholar 

  19. Karapolat I, Kalfa M, Keser G et al (2013) Comparison of F18-FDG PET/CT findings with current clinical disease status in patients with Takayasu's arteritis. Clin Exp Rheumatol 31:S15–S21

    CAS  PubMed  Google Scholar 

  20. Kobayashi Y, Ishii K, Oda K et al (2005) Aortic wall inflammation due to Takayasu arteritis imaged with 18F-FDG PET coregistered with enhanced CT. J Nucl Med 46:917–922

    PubMed  Google Scholar 

  21. Lee KH, Cho A, Choi YJ et al (2012) The role of (18) F-fluorodeoxyglucose-positron emission tomography in the assessment of disease activity in patients with Takayasu arteritis. Arthritis Rheum 64:866–875. https://doi.org/10.1002/art.33413

    Article  PubMed  Google Scholar 

  22. Santhosh S, Mittal BR, Gayana S et al (2014) F-18 FDG PET/CT in the evaluation of Takayasu arteritis: an experience from the tropics. J Nucl Cardiol 21:993–1000. https://doi.org/10.1007/s12350-014-9910-8

    Article  PubMed  Google Scholar 

  23. Tezuka D, Haraguchi G, Ishihara T et al (2012) Role of FDG PET-CT in Takayasu arteritis: sensitive detection of recurrences. JACC Cardiovasc Imaging 5:422–429. https://doi.org/10.1016/j.jcmg.2012.01.013

    Article  PubMed  Google Scholar 

  24. Webb M, Chambers A, Al-Nahhas A et al (2004) The role of 18F-FDG PET in characterising disease activity in Takayasu arteritis. Eur J Nucl Med Mol Imaging 31:627–634. https://doi.org/10.1007/s00259-003-1429-1

    Article  PubMed  Google Scholar 

  25. Alibaz-Oner F, Dede F, Ones T, Turoglu HT, Direskeneli H (2015) Patients with Takayasu's arteritis having persistent acute-phase response usually have an increased major vessel uptake by 18F-FDG-PET/CT. Mod Rheumatol 25:752–755. https://doi.org/10.3109/14397595.2015.1012798

    Article  CAS  PubMed  Google Scholar 

  26. Incerti E, Tombetti E, Fallanca F et al (2017) (18)F-FDG PET reveals unique features of large vessel inflammation in patients with Takayasu's arteritis. Eur J Nucl Med Mol Imaging 44:1109–1118. https://doi.org/10.1007/s00259-017-3639-y

    Article  CAS  PubMed  Google Scholar 

  27. Arraes AE, de Souza AW, Mariz HA et al (2016) (18)F-Fluorodeoxyglucose positron emission tomography and serum cytokines and matrix metalloproteinases in the assessment of disease activity in Takayasu's arteritis. Rev Bras Reumatol Engl Ed 56:299–308. https://doi.org/10.1016/j.rbre.2015.08.007

    Article  PubMed  Google Scholar 

  28. Grayson PC, Alehashemi S, Bagheri AA et al (2018) (18)F-fluorodeoxyglucose-positron emission tomography as an imaging biomarker in a prospective, longitudinal cohort of patients with large vessel vasculitis. Arthritis Rheumatol 70:439–449. https://doi.org/10.1002/art.40379

    Article  PubMed  PubMed Central  Google Scholar 

  29. Schramm N, Ingenhoff J, Dechant C et al (2019) Diagnostic accuracy of positron emission tomography for assessment of disease activity in large vessel vasculitis. Int J Rheum Dis 22:1371–1377. https://doi.org/10.1111/1756-185X.13440

    Article  PubMed  Google Scholar 

  30. Soussan M, Nicolas P, Schramm C et al (2015) Management of large-vessel vasculitis with FDG-PET: a systematic literature review and meta-analysis. Medicine (Baltimore) 94:e622. https://doi.org/10.1097/MD.0000000000000622

    Article  PubMed  PubMed Central  Google Scholar 

  31. Cheng Y, Lv N, Wang Z, Chen B, Dang A (2013) 18-FDG-PET in assessing disease activity in Takayasu arteritis: a meta-analysis. Clin Exp Rheumatol 31:S22–S27

    CAS  PubMed  Google Scholar 

  32. Evans NR, Tarkin JM, Chowdhury MM, Warburton EA, Rudd JH (2016) PET imaging of atherosclerotic disease: advancing plaque assessment from anatomy to pathophysiology. Curr Atheroscler Rep 18:30

    Article  PubMed  PubMed Central  Google Scholar 

  33. Hoffman GS, Merkel PA, Brasington RD, Lenschow DJ, Liang P (2004) Anti-tumor necrosis factor therapy in patients with difficult to treat Takayasu arteritis. Arthritis Rheum 50:2296–2304. https://doi.org/10.1002/art.20300

    Article  CAS  PubMed  Google Scholar 

  34. Thygesen K, Alpert JS, Jaffe AS, Joint ESC/ACCF/AHA/WHF task force for the universal definition of myocardial infarction et al (2012) Third universal definition of myocardial infarction. Circulation 126:2020–2035. https://doi.org/10.1161/CIR.0b013e31826e1058

    Article  PubMed  Google Scholar 

  35. Luepker RV, Apple FS, Christenson RH et al (2003) Case definitions for acute coronary heart disease in epidemiology and clinical research studies: a statement from the AHA Council on Epidemiology and Prevention; AHA Statistics Committee; World Heart Federation Council on Epidemiology and Prevention; the European Society of Cardiology Working Group on Epidemiology and Prevention; Centers for Disease Control and Prevention; and the National Heart, Lung, and Blood Institute. Circulation 108:2543–2549. https://doi.org/10.1161/01.CIR.0000100560.46946.EA

    Article  PubMed  Google Scholar 

  36. Sacco RL, Kasner SE, Broderick JP, American Heart Association Stroke Council, Council on Cardiovascular Surgery, and Anesthesia; Council on Cardiovascular Radiology, and Intervention; Council on Cardiovascular, and Stroke Nursing; Council on Epidemiology, and Prevention; Council on Peripheral Vascular Disease; Council on Nutrition, Physical Activity, and Metabolism et al (2013) An updated definition of stroke for the 21st century: a statement for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 44:2064–2089. https://doi.org/10.1161/STR.0b013e318296aeca

    Article  PubMed  Google Scholar 

  37. American Gastroenterological Association Medical Position Statement (2000) Guidelines on intestinal ischemia. Gastroenterology 118:951–953. https://doi.org/10.1016/s0016-5085(00)70182-x

    Article  Google Scholar 

  38. Norgren L, Hiatt WR, Dormandy JA, TASC II Working Group et al (2007) Inter-society consensus for the management of peripheral arterial disease (TASC II). J Vasc Surg 45:S5–S67. https://doi.org/10.1016/j.jvs.2006.12.037

    Article  PubMed  Google Scholar 

  39. Dejaco C, Ramiro S, Duftner C et al (2018) EULAR recommendations for the use of imaging in large vessel vasculitis in clinical practice. Ann Rheum Dis 77:636–643. https://doi.org/10.1136/annrheumdis-2017-212649

    Article  PubMed  Google Scholar 

  40. Soriano A, Pazzola G, Boiardi L et al (2018) Distribution patterns of 18F-fluorodeoxyglucose in large vessels of Takayasu's and giant cell arteritis using positron emission tomography. Clin Exp Rheumatol 36(Suppl 111):99–106

    PubMed  Google Scholar 

  41. Youngstein T, Tombetti E, Mukherjee J et al (2017) FDG uptake by prosthetic arterial grafts in large vessel vasculitis is not specific for active disease. JACC Cardiovasc Imaging 10:1042–1052. https://doi.org/10.1016/j.jcmg.2016.09.027

    Article  PubMed  Google Scholar 

  42. Tso E, Flamm SD, White RD et al (2002) Takayasu arteritis: utility and limitations of magnetic resonance imaging in diagnosis and treatment. Arthritis Rheum 46:1634–1642. https://doi.org/10.1002/art.10251

    Article  PubMed  Google Scholar 

  43. Gudbrandsson B, Molberg Ø, Palm Ø (2017) TNF inhibitors appear to inhibit disease progression and improve outcome in Takayasu arteritis; an observational, population-based time trend study. Arthritis Res Ther 19:99. https://doi.org/10.1186/s13075-017-1316-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Mekinian A, Comarmond C, Resche-Rigon M, French Takayasu Network et al (2015) Efficacy of biological-targeted treatments in takayasu arteritis: multicenter, retrospective study of 49 patients. Circulation 132:1693–1700. https://doi.org/10.1161/CIRCULATIONAHA.114.014321

    Article  CAS  PubMed  Google Scholar 

  45. Pucar D, Liu C (2019) Standardization and quantification is a key to the future of atherosclerosis FDG PET/CT imaging. J Nucl Cardiol. https://doi.org/10.1007/s12350-019-01905-7

    Article  PubMed  Google Scholar 

  46. Quinn KA, Rosenblum JS, Rimland CA, Gribbons KB, Ahlman MA, Grayson PC (2019) Imaging acquisition technique influences interpretation of positron emission tomography vascular activity in large-vessel vasculitis. Semin Arthritis Rheum. https://doi.org/10.1016/j.semarthrit.2019.07.008

    Article  PubMed  PubMed Central  Google Scholar 

  47. Janes ALF, Castro MF, Savioli B, Arraes AED, Sato EI, de Souza AW (2017) PET-CT findings and clinical outcomes in Takayasu arteritis—does 18F-fluorodeoxyglucose uptake in arteries predict relapses? Arthritis Rheumatol 69(Suppl S10):1173–1174

    Google Scholar 

  48. Janes ALF, Castro MF, Savioli B, Arraes AED, Sato EI, de Souza AW (2017) Estudo longitudinal para avaliar evolução clínica e arteriográfica de pacientes com arterite de Takayasu submetidos ao PET-CT com 18F-FDG. Rev Bras Reumatol 57(Suppl 1):S355–S356. https://doi.org/10.1016/j.rbr.2017.07.493

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Henrique A. Mariz, Neusa P. Silva, Ivone C. G. Torres, Paula N. V. Pinto and Eduardo N. P. Lima for their contribution for the development of this study.

Funding

This study was supported by Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) Grant Numbers 2008/54787-3 and 2015-16020/6.

Author information

Authors and Affiliations

Authors

Contributions

ALFJ contributed to the study design, and to the acquisition of data, analyzed and interpreted data, drafted the manuscript, and gave approval to the final version of the manuscript. MFC contributed to the to the acquisition of data, interpreted data for the work, revised critically the manuscript for important intellectual content, and gave approval to the final version of the manuscript. AEDA contributed to the to the acquisition of data, revised critically the manuscript for important intellectual content, and gave approval to the final version of the manuscript. BS contributed to the to the acquisition of data, interpreted data for the work, revised critically the manuscript for important intellectual content, and gave approval to the final version of the manuscript. EIS contributed to the study design, interpreted data for the work, revised critically the manuscript for important intellectual content, and gave approval to the final version of the manuscript. AWSS contributed to the study design, analyzed data, revised critically the manuscript for important intellectual content, and gave approval to the final version of the manuscript. All authors agree to be accountable for all aspects of the article as the ensure that questions regarding its accuracy or integrity will be promptly investigated and resolved.

Corresponding author

Correspondence to Alexandre W. S. de Souza.

Ethics declarations

Conflict of interest

The authors A.L.F.J., M.F.C., A.E.D.A., B.S., and E.I.S. declare that they have no conflicts of interests. Author A.W.S.S. received a speaker honorarium from Roche.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This study was published as congress abstract in Refs. [47, 48].

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Janes, A.L.F., Castro, M.F., Arraes, A.E.D. et al. A retrospective cohort study to assess PET-CT findings and clinical outcomes in Takayasu arteritis: does 18F-fluorodeoxyglucose uptake in arteries predict relapses?. Rheumatol Int 40, 1123–1131 (2020). https://doi.org/10.1007/s00296-020-04551-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00296-020-04551-2

Keywords

Navigation