Skip to main content

Advertisement

Log in

The association of interleukin-31 polymorphisms with interleukin-31 serum levels and risk of systemic lupus erythematosus

  • Original Article - Genes and Disease
  • Published:
Rheumatology International Aims and scope Submit manuscript

Abstract

Interleukin-31 (IL-31) is the most recently discovered member of the gp130/IL-6 cytokine family which is produced mainly by activated Th2 cells. IL-31 was proved to play a crucial role in autoimmune and inflammatory diseases such as atopic dermatitis, asthma, cutaneous T cell lymphomas, Kawasaki disease and allergic rhinitis. Previous studies have identified that IL-31 could significantly induce the release of proinflammatory cytokines IL-6. Moreover, a large number of studies have shown that IL-6 plays an important role in the pathogenesis of systemic lupus erythematosus (SLE). However, up to date, no study to data was reported on the relationship between IL-31 and SLE. Therefore, in the present study, we investigated the association between IL-31 polymorphisms and its serum levels with the risk of SLE in a Chinese population. We analyzed two single nucleotide polymorphisms of IL-31 gene rs7977932 C/G and rs4758680 G/T in 190 patients with SLE and 250 age- and sex-matched controls, using polymerase chain reaction-single base extension and DNA sequencing methods. Soluble IL-31 (sIL-31) levels were measured by ELISA. From this study, we found that there were significant differences in the genotype and allele frequencies of IL-31 gene rs7977932 C/G polymorphism between the group of patients with SLE and the control group (P < 0.05). sIL-31 levels were increased in patients with SLE compared with controls (P < 0.01). Moreover, genotypes carrying the IL-31 rs7977932 G variant allele were associated with increased IL-31 levels compared to the homozygous wild-type genotype in patients with SLE. The rs7977932 C/G polymorphism of IL-31 gene and its sIL-31 levels were associated with SLE in the Chinese population. Our data suggest that IL-31 gene may play a role in the development of SLE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Chua KH, Kee BP, Tan SY, Lian LH (2009) Interleukin-6 promoter polymorphisms (−174 G/C) in Malaysian patients with systemic lupus erythematosus. Braz J Med Biol Res 42(6):551–555

    Article  CAS  PubMed  Google Scholar 

  2. Fleischer V, Sieber J, Fleischer SJ et al (2015) Epratuzumab inhibits the production of the proinflammatory cytokines IL-6 and TNF-alpha, but not the regulatory cytokine IL-10, by B cells from healthy donors and SLE patients. Arthritis Res Ther 17:185

    Article  PubMed  PubMed Central  Google Scholar 

  3. Funauchi M, Yu H, Sugiyama M et al (1999) Increased interleukin-4 production by NK T cells in systemic lupus erythematosus. Clin Immunol 92(2):197–202

    Article  CAS  PubMed  Google Scholar 

  4. Chun HY, Chung JW, Kim HA et al (2007) Cytokine IL-6 and IL-10 as biomarkers in systemic lupus erythematosus. J Clin Immunol 27(5):461–466

    Article  CAS  PubMed  Google Scholar 

  5. Lan Y, Luo B, Wang JL, Jiang YW, Wei YS (2014) The association of interleukin-21 polymorphisms with interleukin-21 serum levels and risk of systemic lupus erythematosus. Gene 538(1):94–98

    Article  CAS  PubMed  Google Scholar 

  6. Duarte AL, Dantas AT, de Ataide Mariz H et al (2013) Decreased serum interleukin 27 in Brazilian systemic lupus erythematosus patients. Mol Biol Rep 40(8):4889–4892

    Article  CAS  PubMed  Google Scholar 

  7. Qiu F, Song L, Yang N, Li X (2013) Glucocorticoid downregulates expression of IL-12 family cytokines in systemic lupus erythematosus patients. Lupus 22(10):1011–1016

    Article  CAS  PubMed  Google Scholar 

  8. Robak E, Kulczycka-Siennicka L, Gerlicz Z, Kierstan M, Korycka-Wolowiec A, Sysa-Jedrzejowska A (2013) Correlations between concentrations of interleukin (IL)-17A, IL-17B and IL-17F, and endothelial cells and proangiogenic cytokines in systemic lupus erythematosus patients. Eur Cytokine Netw 24(1):60–68

    CAS  PubMed  Google Scholar 

  9. Smiljanovic B, Grun JR, Biesen R et al (2012) The multifaceted balance of TNF-alpha and type I/II interferon responses in SLE and RA: how monocytes manage the impact of cytokines. J Mol Med 90(11):1295–1309

    Article  CAS  PubMed  Google Scholar 

  10. Zhang Q, Putheti P, Zhou Q, Liu Q, Gao W (2008) Structures and biological functions of IL-31 and IL-31 receptors. Cytokine Growth Factor Rev 19(5–6):347–356

    Article  PubMed  PubMed Central  Google Scholar 

  11. Dillon SR, Sprecher C, Hammond A et al (2004) Interleukin 31, a cytokine produced by activated T cells, induces dermatitis in mice. Nat Immunol 5(7):752–760

    Article  CAS  PubMed  Google Scholar 

  12. Sonkoly E, Muller A, Lauerma AI et al (2006) IL-31: a new link between T cells and pruritus in atopic skin inflammation. J Allergy Clin Immunol 117(2):411–417

    Article  CAS  PubMed  Google Scholar 

  13. Dreuw A, Radtke S, Pflanz S, Lippok BE, Heinrich PC, Hermanns HM (2004) Characterization of the signaling capacities of the novel gp130-like cytokine receptor. J Biol Chem 279(34):36112–36120

    Article  CAS  PubMed  Google Scholar 

  14. Heise R, Neis MM, Marquardt Y et al (2009) IL-31 receptor alpha expression in epidermal keratinocytes is modulated by cell differentiation and interferon gamma. J Investig Dermatol 129(1):240–243

    Article  CAS  PubMed  Google Scholar 

  15. Akdis M, Burgler S, Crameri R et al (2011) Interleukins, from 1 to 37, and interferon-gamma: receptors, functions, and roles in diseases. J Allergy Clin Immunol 127(3):701–721

    Article  CAS  PubMed  Google Scholar 

  16. Kasraie S, Niebuhr M, Baumert K, Werfel T (2011) Functional effects of interleukin 31 in human primary keratinocytes. Allergy 66(7):845–852

    Article  CAS  PubMed  Google Scholar 

  17. Kasraie S, Niebuhr M, Werfel T (2010) Interleukin (IL)-31 induces pro-inflammatory cytokines in human monocytes and macrophages following stimulation with staphylococcal exotoxins. Allergy 65(6):712–721

    Article  CAS  PubMed  Google Scholar 

  18. Heinrich PC, Behrmann I, Muller-Newen G, Schaper F, Graeve L (1998) Interleukin-6-type cytokine signalling through the gp130/Jak/STAT pathway. Biochem J 334(Pt 2):297–314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Yu JI, Han WC, Yun KJ, Moon HB, Oh GJ, Chae SC (2012) Identifying polymorphisms in IL-31 and their association with susceptibility to asthma. Korean J Pathol 46(2):162–168

    Article  PubMed  PubMed Central  Google Scholar 

  20. Nobbe S, Dziunycz P, Muhleisen B et al (2012) IL-31 expression by inflammatory cells is preferentially elevated in atopic dermatitis. Acta dermato-venereologica 92(1):24–28

    Article  CAS  PubMed  Google Scholar 

  21. Gonzales AJ, Humphrey WR, Messamore JE et al (2013) Interleukin-31: its role in canine pruritus and naturally occurring canine atopic dermatitis. Vet Dermatol 24(1):48–53

    Article  PubMed  Google Scholar 

  22. Stott B, Lavender P, Lehmann S, Pennino D, Durham S, Schmidt-Weber CB (2013) Human IL-31 is induced by IL-4 and promotes TH2-driven inflammation. J Allergy Clin Immunol 132(2):446–454

    Article  CAS  PubMed  Google Scholar 

  23. Tseng WN, Lo MH, Guo MM, Hsieh KS, Chang WC, Kuo HC (2014) IL-31 associated with coronary artery lesion formation in Kawasaki disease. PLoS ONE 9(8):e105195

    Article  PubMed  PubMed Central  Google Scholar 

  24. Singer EM, Shin DB, Nattkemper LA et al (2013) IL-31 is produced by the malignant T-cell population in cutaneous T-Cell lymphoma and correlates with CTCL pruritus. J Investig Dermatol 133(12):2783–2785

    Article  CAS  PubMed  Google Scholar 

  25. Linker-Israeli M, Wallace DJ, Prehn J et al (1999) Association of IL-6 gene alleles with systemic lupus erythematosus (SLE) and with elevated IL-6 expression. Genes Immun 1(1):45–52

    Article  CAS  PubMed  Google Scholar 

  26. Sabry A, Elbasyouni SR, Sheashaa HA et al (2006) Correlation between levels of TNF-alpha and IL-6 and hematological involvement in SLE Egyptian patients with lupus nephritis. Int Urol Nephrol 38(3–4):731–737

    CAS  PubMed  Google Scholar 

  27. Mao X, Wu Y, Diao H et al (2014) Interleukin-6 promotes systemic lupus erythematosus progression with Treg suppression approach in a murine systemic lupus erythematosus model. Clin Rheumatol 33(11):1585–1593

    Article  PubMed  Google Scholar 

  28. Cigni A, Pileri PV, Faedda R et al (2014) Interleukin 1, interleukin 6, interleukin 10, and tumor necrosis factor alpha in active and quiescent systemic lupus erythematosus. J Investig Med 62(5):825–829

    Article  CAS  PubMed  Google Scholar 

  29. Cui YX, Fu CW, Jiang F, Ye LX, Meng W (2015) Association of the interleukin-6 polymorphisms with systemic lupus erythematosus: a meta-analysis. Lupus 24(12):1308–1317

    Article  CAS  PubMed  Google Scholar 

  30. Cheung PF, Wong CK, Ho AW, Hu S, Chen DP, Lam CW (2010) Activation of human eosinophils and epidermal keratinocytes by Th2 cytokine IL-31: implication for the immunopathogenesis of atopic dermatitis. Int Immunol 22(6):453–467

    Article  CAS  PubMed  Google Scholar 

  31. Stephens M, Smith NJ, Donnelly P (2001) A new statistical method for haplotype reconstruction from population data. Am J Hum Genet 68(4):978–989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Diveu C, Lelievre E, Perret D et al (2003) GPL, a novel cytokine receptor related to GP130 and leukemia inhibitory factor receptor. J Biol Chem 278(50):49850–49859

    Article  CAS  PubMed  Google Scholar 

  33. Yagi Y, Andoh A, Nishida A et al (2007) Interleukin-31 stimulates production of inflammatory mediators from human colonic subepithelial myofibroblasts. Int J Mol Med 19(6):941–946

    CAS  PubMed  Google Scholar 

  34. Ohmatsu H, Sugaya M, Suga H et al (2012) Serum IL-31 levels are increased in patients with cutaneous T-cell lymphoma. Acta dermato-venereologica 92(3):282–283

    Article  CAS  PubMed  Google Scholar 

  35. Lan CC, Tu HP, Wu CS et al (2011) Distinct SPINK5 and IL-31 polymorphisms are associated with atopic eczema and non-atopic hand dermatitis in Taiwanese nursing population. Exp Dermatol 20(12):975–979

    Article  CAS  PubMed  Google Scholar 

  36. Schulz F, Marenholz I, Folster-Holst R et al (2007) A common haplotype of the IL-31 gene influencing gene expression is associated with nonatopic eczema. J Allergy Clin Immunol 120(5):1097–1102

    Article  CAS  PubMed  Google Scholar 

  37. Sokolowska-Wojdylo M, Glen J, Zablotna M et al (2013) Association of distinct IL-31 polymorphisms with pruritus and severity of atopic dermatitis. J Eur Acad Dermatol Venereol 27(5):662–664

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by National Natural Science Foundation (No. 81260234).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yan Lan or Ye-Sheng Wei.

Ethics declarations

Conflict of interest

No competing financial interests exist.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, HT., Chen, JM., Guo, J. et al. The association of interleukin-31 polymorphisms with interleukin-31 serum levels and risk of systemic lupus erythematosus. Rheumatol Int 36, 799–805 (2016). https://doi.org/10.1007/s00296-016-3422-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00296-016-3422-6

Keywords

Navigation