Advertisement

Rheumatology International

, Volume 33, Issue 5, pp 1127–1133 | Cite as

SKG arthritis as a model for evaluating therapies in rheumatoid arthritis with special focus on bone changes

  • Kresten Krarup KellerEmail author
  • Lisa Mejlvang Lindgaard
  • Lise Wogensen
  • Frederik Dagnæs-Hansen
  • Jesper Skovhus Thomsen
  • Shimon Sakaguchi
  • Kristian Stengaard-Pedersen
  • Ellen-Margrethe Hauge
Original Article

Abstract

The aim was to further characterize the SKG model of rheumatoid arthritis (RA) and its potential for studying intervention treatments, with special focus on bone targeting therapies. Three individual studies were conducted, using a total of 71 SKG mice, comparing arthritis induction with mannan versus zymosan A, female versus male mice, and the effect of dexamethasone intervention treatment initiated at different time points after arthritis induction. Hind paws were embedded undecalcified in methyl methacrylate, and sections were stained with Masson-Goldner trichrome. Areal Bone Mineral Density (aBMD) of the femora was determined with pDXA. RNA was extracted from the hind paws followed by the quantification by reverse transcriptase PCR. SKG mice stimulated with mannan presented a higher arthritis score than mice stimulated with zymosan A. Female SKG mice developed a more severe arthritis than male SKG mice. Dexamethasone inhibited arthritis clinically as well as histologically when the treatment was initiated prophylactically or within the first week of arthritis. Femoral aBMD was lower in animals with arthritis than in control animals. The RANKL RNA expression was elevated in arthritic mice, whereas OPG RNA expression was unchanged. The results suggest mannan as arthritis inductor and female instead of male mice in experiments as well as an optimal time window for the initiation of treatment. Systemic bone loss as well as local up regulation of RANKL was present early in SKG arthritis. These results demonstrate that SKG arthritis is a suitable new model for evaluating therapies in RA.

Keywords

Rheumatoid arthritis Bone Animal models Experimental arthritis Osteoclast SKG mouse 

Notes

Acknowledgments

The authors are grateful for the technical assistance of Dorthe Clausen, Jette Barlach, and Lotte Arentoft. This work was supported by the Danish Rheumatism Association, the Hørslev Foundation, Clinical Institute Aarhus University, Peter Ryholts Grant, the Hede Nielsens Family Foundation, The A. P. Møller Foundation for the Advancement of Medical Science and Aase and Ejnar Danielsens Foundation.

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Keystone EC, Kavanaugh AF, Sharp JT, Tannenbaum H, Hua Y et al (2004) Radiographic, clinical, and functional outcomes of treatment with adalimumab (a human anti-tumor necrosis factor monoclonal antibody) in patients with active rheumatoid arthritis receiving concomitant methotrexate therapy: a randomized, placebo-controlled, 52-week trial. Arthritis Rheum 50(5):1400–1411PubMedCrossRefGoogle Scholar
  2. 2.
    Graudal N, Jurgens G (2010) Similar effects of disease-modifying antirheumatic drugs, glucocorticoids, and biologic agents on radiographic progression in rheumatoid arthritis: meta-analysis of 70 randomized placebo-controlled or drug-controlled studies, including 112 comparisons. Arthritis Rheum 62(10):2852–2863PubMedCrossRefGoogle Scholar
  3. 3.
    Asquith DL, Miller AM, McInnes IB, Liew FY (2009) Animal models of rheumatoid arthritis. Eur J Immunol 39(8):2040–2044PubMedCrossRefGoogle Scholar
  4. 4.
    Holmdahl R, Jansson L, Larsson E, Rubin K, Klareskog L (1986) Homologous type II collagen induces chronic and progressive arthritis in mice. Arthritis Rheum 29(1):106–113PubMedCrossRefGoogle Scholar
  5. 5.
    Sakaguchi N, Takahashi T, Hata H, Nomura T, Tagami T et al (2003) Altered thymic T-cell selection due to a mutation of the ZAP-70 gene causes autoimmune arthritis in mice. Nature 426(6965):454–460PubMedCrossRefGoogle Scholar
  6. 6.
    Hata H, Sakaguchi N, Yoshitomi H, Iwakura Y, Sekikawa K et al (2004) Distinct contribution of IL-6, TNF-alpha, IL-1, and IL-10 to T cell-mediated spontaneous autoimmune arthritis in mice. J Clin Invest 114(4):582–588PubMedGoogle Scholar
  7. 7.
    Kobayashi K, Suda T, Nan-Ya K, Sakaguchi N, Sakaguchi S et al (2006) Cytokine production profile of splenocytes derived from zymosan A-treated SKG mice developing arthritis. Inflamm Res 55(8):335–341PubMedCrossRefGoogle Scholar
  8. 8.
    Sakaguchi S, Sakaguchi N, Yoshitomi H, Hata H, Takahashi T et al (2006) Spontaneous development of autoimmune arthritis due to genetic anomaly of T cell signal transduction: part 1. Semin Immunol 18(4):199–206. doi: 10.1016/j.smim.2006.03.007 PubMedCrossRefGoogle Scholar
  9. 9.
    Caetano-Lopes J, Nery AM, Henriques R, Canhao H, Duarte J et al (2009) Chronic arthritis directly induces quantitative and qualitative bone disturbances leading to compromised biomechanical properties. Clin Exp Rheumatol 27(3):475–482PubMedGoogle Scholar
  10. 10.
    Yoshitomi H, Sakaguchi N, Kobayashi K, Brown GD, Tagami T et al (2005) A role for fungal {beta}-glucans and their receptor dectin-1 in the induction of autoimmune arthritis in genetically susceptible mice. J Exp Med 201(6):949–960PubMedCrossRefGoogle Scholar
  11. 11.
    Das Roy L, Pathangey LB, Tinder TL, Schettini JL, Gruber HE et al (2009) Breast cancer-associated metastasis is significantly increased in a model of autoimmune arthritis. Breast Cancer Res 11(4):R56PubMedCrossRefGoogle Scholar
  12. 12.
    Hashimoto M, Hirota K, Yoshitomi H, Maeda S, Teradaira S et al (2010) Complement drives Th17 cell differentiation and triggers autoimmune arthritis. J Exp Med 207(6):1135–1143PubMedCrossRefGoogle Scholar
  13. 13.
    Keller KK, Stengaard-Pedersen K, Dagnaes-Hansen F, Nyengaard JR, Sakaguchi S et al (2011) Histological changes in chronic autoimmune SKG-arthritis evaluated by quantitative three-dimensional stereological estimators. Clin Exp Rheumatol 29(3):536–543PubMedGoogle Scholar
  14. 14.
    Schett G (2007) Cells of the synovium in rheumatoid arthritis. osteoclasts. Arthritis Res Ther 9(1):203PubMedCrossRefGoogle Scholar
  15. 15.
    Roux C (2011) Osteoporosis in inflammatory joint diseases. Osteoporos Int 22(2):421–433PubMedCrossRefGoogle Scholar
  16. 16.
    Caetano-Lopes J, Nery AM, Canhao H, Duarte J, Cascao R et al (2010) Chronic arthritis leads to disturbances in the bone collagen network. Arthritis Res Ther 12(1):R9PubMedCrossRefGoogle Scholar
  17. 17.
    Erben RG (1996) Trabecular and endocortical bone surfaces in the rat: modeling or remodeling? Anat Rec 246(1):39–46PubMedCrossRefGoogle Scholar
  18. 18.
    Holmdahl R, Jansson L, Andersson M (1986) Female sex hormones suppress development of collagen-induced arthritis in mice. Arthritis Rheum 29(12):1501–1509PubMedCrossRefGoogle Scholar
  19. 19.
    Gerosa M, De Angelis V, Riboldi P, Meroni PL (2008) Rheumatoid arthritis: a female challenge. Womens Health (Lond Engl) 4(2):195–201CrossRefGoogle Scholar
  20. 20.
    Hetland ML, Stengaard-Pedersen K, Junker P, Lottenburger T, Ellingsen T et al (2006) Combination treatment with methotrexate, cyclosporine, and intraarticular betamethasone compared with methotrexate and intraarticular betamethasone in early active rheumatoid arthritis: an investigator-initiated, multicenter, randomized, double-blind, parallel-group, placebo-controlled study. Arthritis Rheum 54(5):1401–1409PubMedCrossRefGoogle Scholar
  21. 21.
    Lacey DL, Timms E, Tan HL, Kelley MJ, Dunstan CR et al (1998) Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell 93(2):165–176PubMedCrossRefGoogle Scholar
  22. 22.
    Kong YY, Yoshida H, Sarosi I, Tan HL, Timms E et al (1999) OPGL is a key regulator of osteoclastogenesis, lymphocyte development and lymph-node organogenesis. Nature 397(6717):315–323PubMedCrossRefGoogle Scholar
  23. 23.
    Simonet WS, Lacey DL, Dunstan CR, Kelley M, Chang MS et al (1997) Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell 89(2):309–319PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Kresten Krarup Keller
    • 1
    Email author
  • Lisa Mejlvang Lindgaard
    • 2
  • Lise Wogensen
    • 2
  • Frederik Dagnæs-Hansen
    • 3
  • Jesper Skovhus Thomsen
    • 4
  • Shimon Sakaguchi
    • 5
  • Kristian Stengaard-Pedersen
    • 6
  • Ellen-Margrethe Hauge
    • 6
  1. 1.Department of RheumatologyAarhus University HospitalAarhus CDenmark
  2. 2.Research Laboratory for Biochemical PathologyAarhus University HospitalAarhus CDenmark
  3. 3.Institute of Medical Microbiology and ImmunologyAarhus UniversityAarhus CDenmark
  4. 4.Institute of AnatomyAarhus UniversityAarhus CDenmark
  5. 5.Department of Experimental Pathology, Institute for Frontier Medical ScienceKyoto UniversityKyotoJapan
  6. 6.Department of RheumatologyAarhus University HospitalAarhus CDenmark

Personalised recommendations