Skip to main content
Log in

Nucleoid-mediated positioning and transport in bacteria

  • Review
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

Precise management of the spatiotemporal position of subcellular components is critical to a number of essential processes in the bacterial cell. The bacterial nucleoid is a highly structured yet dynamic object that undergoes significant reorganization during the relatively short cell cycle, e.g. during gene expression, chromosome replication, and segregation. Although the nucleoid takes up a large fraction of the volume of the cell, the mobility of macromolecules within these dense regions is relatively high and recent results suggest that the nucleoid plays an integral role of dynamic localization in a host of seemingly disparate cellular processes. Here, we review a number of recent reports of nucleoid-mediated positioning and transport in the model bacteria Escherichia coli. These results viewed as a whole suggest that the dynamic, cellular-scale structure of the nucleoid may be a key driver of positioning and transport within the cell. This model of a global, default positioning and transport system may help resolve many unanswered questions about the mechanisms of partitioning and segregation in bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Adams DW, Errington J (2009) Bacterial cell division: assembly, maintenance and disassembly of the Z ring. Nat Rev Microbiol 7(9):642

    CAS  PubMed  Google Scholar 

  • Adler H, Fisher W, Cohen A, Hardigree AA (1967) Miniature Escherichia coli cells deficient in DNA. Proc Nat Acad Sci 57(2):321

    CAS  PubMed  Google Scholar 

  • Bailey MW, Bisicchia P, Warren BT, Sherratt DJ, Männik J (2014) Evidence for divisome localization mechanisms independent of the Min system and SlmA in Escherichia coli. PLOS Gen 10(8):e1004504

    Google Scholar 

  • Bates D, Kleckner N (2005) Chromosome and replisome dynamics in E. coli: loss of sister cohesion triggers global chromosome movement and mediates chromosome segregation. Cell 121(6):899–911

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bernhardt TG, de Boer PA (2005) SlmA, a nucleoid-associated, FtsZ binding protein required for blocking septal ring assembly over chromosomes in E. coli. Mol Cell 18(5):555–564

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bharat TA, Murshudov GN, Sachse C, Lӧwe J (2015) Structures of actin-like ParM filaments show architecture of plasmid-segregating spindles. Nature 523(7558):106

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bi E, Lutkenhaus J (1991) FtsZ ring structure associated with division in Escherichia coli. Nature 354(6349):161

    CAS  PubMed  Google Scholar 

  • Bisson-Filho AW, Hsu YP, Squyres GR, Kuru E, Wu F, Jukes C, Sun Y, Dekker C, Holden S, VanNieuwenhze MS, Brun YV (2017) Treadmilling by FtsZ filaments drives peptidoglycan synthesis and bacterial cell division. Science 355(6326):739–743

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bonny M, Fischer-Friedrich E, Loose M, Schwille P, Kruse K (2013) Membrane binding of MinE allows for a comprehensive description of Min-protein pattern formation. PLOS Comput Bio 9(12):e1003347

    Google Scholar 

  • Brézellec P, Hoebeke M, Hiet MS, Pasek S, Ferat JL (2006) Domainsieve: a protein domain-based screen that led to the identification of dam-associated genes with potential link to DNA maintenance. Bioinformatics 22(16):1935–1941

    PubMed  Google Scholar 

  • Bryant JA, Sellars LE, Busby SJ, Lee DJ (2014) Chromosome position effects on gene expression in Escherichia coli K-12. Nucleic Acids Res 42(18):11383–11392

    CAS  PubMed  PubMed Central  Google Scholar 

  • Campbell CS, Mullins RD (2007) In vivo visualization of type II plasmid segregation: bacterial actin filaments pushing plasmids. J Cell Biol 179(5):1059–1066

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cass JA, Kuwada NJ, Traxler B, Wiggins PA (2016) Escherichia coli chromosomal loci segregate from midcell with universal dynamics. Biophys J 110(12):2597–2609

    CAS  PubMed  PubMed Central  Google Scholar 

  • Charbon G, Riber L, Løbner-Olesen A (2018) Countermeasures to survive excessive chromosome replication in Escherichia coli. Curr Genet 64(1):71–79

    CAS  PubMed  Google Scholar 

  • Cho H, McManus HR, Dove SL, Bernhardt TG (2011) Nucleoid occlusion factor SlmA is a DNA-activated FtsZ polymerization antagonist. Proc Nat Acad Sci 108(9):3773–3778

    CAS  PubMed  Google Scholar 

  • Cooper S, Helmstetter CE (1968) Chromosome replication and the division cycle of Escherichia coli. J Mol Biol 31(3):519–540

    CAS  PubMed  Google Scholar 

  • Danilova O, Reyes-Lamothe R, Pinskaya M, Sherratt D, Possoz C (2007) MukB colocalizes with the oriC region and is required for organization of the two Escherichia coli chromosome arms into separate cell halves. Mol Microbiol 65(6):1485–1492

    CAS  PubMed  PubMed Central  Google Scholar 

  • de Boer PA, Crossley RE, Rothfield LI (1989) A division inhibitor and a topological specificity factor coded for by the minicell locus determine proper placement of the division septum in E. coli. Cell 56(4):641–649

    PubMed  Google Scholar 

  • Donachie WD, Begg KJ (1989) Chromosome partition in Escherichia coli requires postreplication protein synthesis. J Bacteriol 171(10):5405–5409

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dupaigne P, Tonthat NK, Espéli O, Whitfill T, Boccard F, Schumacher MA (2012) Molecular basis for a protein-mediated DNA-bridging mechanism that functions in condensation of the E. coli chromosome. Mol Cell. 48(4):560–571

    CAS  PubMed  Google Scholar 

  • Ebersbach G, Gerdes K (2004) Bacterial mitosis: partitioning protein ParA oscillates in spiral-shaped structures and positions plasmids at mid-cell. Mol Micrbiol 52(2):385–398

    CAS  Google Scholar 

  • Ebersbach G, Briegel A, Jensen GJ, Jacobs-Wagner C (2008) A self-associating protein critical for chromosome attachment, division, and polar organization in Caulobacter. Cell 134(6):956–968

    CAS  PubMed  PubMed Central  Google Scholar 

  • Espéli O, Mercier R, Boccard F (2008) Dna dynamics vary according to macrodomain topography in the E. coli chromosome. Mol Microbiol 68(6):1418–1427

    PubMed  Google Scholar 

  • Espéli O, Borne R, Dupaigne P, Thiel A, Gigant E, Mercier R, Boccard F (2012) A MatP-divisome interaction coordinates chromosome segregation with cell division in E. coli. EMBO J 31(14):3198–3211

    PubMed  PubMed Central  Google Scholar 

  • Garner EC, Campbell CS, Weibel DB, Mullins RD (2007) Reconstitution of DNA segregation driven by assembly of a prokaryotic actin homolog. Science 315(5816):1270–1274

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gayathri P, Fujii T, Møller-Jensen J, van Den Ent F, Namba K, Lӧwe J (2012) A bipolar spindle of antiparallel ParM filaments drives bacterial plasmid segregation. Science 338(6112):1334–1337

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gerdes K, Møller-Jensen J, Jensen RB (2000) Plasmid and chromosome partitioning: surprises from phylogeny. Mol Microbiol 37(3):455–466

    CAS  PubMed  Google Scholar 

  • Gray WT, Govers SK, Xiang Y, Parry BR, Campos M, Kim S, Jacobs-Wagner C (2019) Nucleoid size scaling and intracellular organization of translation across bacteria. Cell 177(6):1632–1648

    CAS  PubMed  Google Scholar 

  • Hadizadeh Yazdi N, Guet CC, Johnson RC, Marko JF (2012) Variation of the folding and dynamics of the Escherichia coli chromosome with growth conditions. Mol Microbiol 86(6):1318–1333

    CAS  PubMed  Google Scholar 

  • Helgesen E, Fossum-Raunehaug S, Sætre F, Schink KO, Skarstad K (2015) Dynamic Escherichia coli SeqA complexes organize the newly replicated DNA at a considerable distance from the replisome. Nucleic Acids Res 43(5):2730–2743

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hiraga S, Niki H, Ogura T, Ichinose C, Mori H, Ezaki B, Jaffe A (1989) Chromosome partitioning in Escherichia coli: novel mutants producing anucleate cells. J Bacteriol 171(3):1496–1505

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hiraga S, Ogura T, Niki H, Ichinose C, Mori H (1990) Positioning of replicated chromosomes in Escherichia coli. J Bacteriol 172(1):31–39

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hiraga S, Ichinose C, Onogi T, Niki H, Yamazoe M (2000) Bidirectional migration of SeqA-bound hemimethylated DNA clusters and pairing of oriC copies in Escherichia coli. Genes Cells 5(5):327–341

    CAS  PubMed  Google Scholar 

  • Hirano T (2016) Condensin-based chromosome organization from bacteria to vertebr. Cell 164(5):847–857

    CAS  PubMed  Google Scholar 

  • Hofmann A, Mäkelä J, Sherratt DJ, Heermann D, Murray SM (2019) Self-organised segregation of bacterial chromosomal origins. elife 8:e46564

    PubMed  PubMed Central  Google Scholar 

  • Hu Z, Mukherjee A, Pichoff S, Lutkenhaus J (1999) The MinC component of the division site selection system in Escherichia coli interacts with FtsZ to prevent polymerization. Proc Nat Acad Sci 96(26):14819–14824

    CAS  PubMed  Google Scholar 

  • Hu L, Vecchiarelli AG, Mizuuchi K, Neuman KC, Liu J (2015) Directed and persistent movement arises from mechanochemistry of the ParA/ParB system. Proc Nat Acad Sci 112(51):E7055–E7064

    CAS  PubMed  Google Scholar 

  • Jacob F, Brenner S, Cuzin F (1963) On the regulation of DNA replication in bacteria. Cold Spring Harbor Symp Quant Biol 28:329–348

    CAS  Google Scholar 

  • Jensen RB, Gerdes K (1997) Partitioning of plasmid R1. The ParM protein exhibits ATPase activity and interacts with the centromere-like ParR-parC complex. J Mol Biol 269(4):505–513

    CAS  PubMed  Google Scholar 

  • Joshi MC, Bourniquel A, Fisher J, Ho BT, Magnan D, Kleckner N, Bates D (2011) Escherichia coli sister chromosome separation includes an abrupt global transition with concomitant release of late-splitting intersister snaps. Proc Nat Acad Sci 108(7):2765–2770

    CAS  PubMed  Google Scholar 

  • Joshi MC, Magnan D, Montminy TP, Lies M, Stepankiw N, Bates D (2013) Regulation of sister chromosome cohesion by the replication fork tracking protein SeqA. PLoS Genet 9(8):e1003673

    CAS  PubMed  PubMed Central  Google Scholar 

  • Krogh TJ, Møller-Jensen JJ, Kaleta CC (2019) Impact of chromosomal architecture on the function and evolution of bacterial genomes. Front Microbiol 9:2019

    Google Scholar 

  • Kuwada NJ, Cheveralls KC, Traxler B, Wiggins PA (2013) Mapping the driving forces of chromosome structure and segregation in Escherichia coli. Nucleic Acids Res 41(15):7370–7377

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kuwada NJ, Traxler B, Wiggins PA (2015) Genome-scale quantitative characterization of bacterial protein localization dynamics throughout the cell cycle. Mol Microbiol 95(1):64–79

    CAS  PubMed  Google Scholar 

  • Le Gall A, Cattoni DI, Guilhas B, Mathieu-Demaziere C, Oudjedi L, Fiche JB, Rech J, Abrahamsson S, Murray H, Bouet JY et al (2016) Bacterial partition complexes segregate within the volume of the nucleoid. Nat Commun 7:12107

    PubMed  PubMed Central  Google Scholar 

  • Leighton RB, Sands ML (1965) The Feynman lectures on physics: mainly mechanics, radiation and heat. Addison-Wesley, Boston

    Google Scholar 

  • Lim HC, Surovtsev IV, Beltran BG, Huang F, Bewersdorf J, Jacobs-Wagner C (2014) Evidence for a DNA-relay mechanism in ParABS-mediated chromosome segregation. eLife 3:e02758

    PubMed  PubMed Central  Google Scholar 

  • Lioy VS, Cournac A, Marbouty M, Duigou S, Mozziconacci J, Espéli O, Boccard F, Koszul R (2018) Multiscale structuring of the E. coli chromosome by nucleoid-associated and condensin proteins. Cell 172(4):771–783

    CAS  PubMed  Google Scholar 

  • Llopis PM, Jackson AF, Sliusarenko O, Surovtsev I, Heinritz J, Emonet T, Jacobs-Wagner C (2010) Spatial organization of the flow of genetic information in bacteria. Nature 466(7302):77

    CAS  PubMed Central  Google Scholar 

  • Løbner-Olesen A, Skovgaard O, Marinus MG (2005) Dam methylation: coordinating cellular processes. Curr Opin Microbiol 8(2):154–160

    PubMed  Google Scholar 

  • Lu M, Campbell JL, Boye E, Kleckner N (1994) Seqa: a negative modulator of replication initiation in E. coli. Cell 77(3):413–426

    CAS  PubMed  Google Scholar 

  • Lutkenhaus J (2012) The ParA/MinD family puts things in their place. Trends Microbiol 20(9):411–418

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ma X, Ehrhardt DW, Margolin W (1996) Colocalization of cell division proteins FtsZ and FtsA to cytoskeletal structures in living Escherichia coli cells by using green fluorescent protein. Proc Nat Acad Sci 93(23):12998–13003

    CAS  PubMed  Google Scholar 

  • Mai J, Sokolov I, Blumen A (2001) Directed particle diffusion under “burnt bridges” conditions. Phys Rev E 64(1):011102

    CAS  Google Scholar 

  • Mangiameli SM, Cass JA, Merrikh H, Wiggins PA (2018) The bacterial replisome has factory-like localization. Curr Genet 64(5):1029–1036

    CAS  PubMed  Google Scholar 

  • Männik J, Bailey MW (2015) Spatial coordination between chromosomes and cell division proteins in Escherichia coli. Front Microbiol 6:306

    PubMed  PubMed Central  Google Scholar 

  • Melby T, Ciampaglio C, Briscoe G, Erickson H (1998) The symmetrical structure of structural maintenance of chromosomes (SMC) and MukB proteins: long antiparallel coiled coils, folded at a flexible hinge. J Cell Biol 142(6):1595–1604

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mercier R, Petit MA, Schbath S, Robin S, El Karoui M, Boccard F, Espéli O (2008) The MatP/matS site-specific system organizes the terminus region of the E. coli chromosome into a macrodomain. Cell 135(3):475–485

    CAS  PubMed  Google Scholar 

  • Meyer S, Reverchon S, Nasser W, Muskhelishvili G (2018) Chromosomal organization of transcription: in a nutshell. Curr Genet 64(3):555–565

    CAS  PubMed  Google Scholar 

  • Moffitt JR, Pandey S, Boettiger AN, Wang S, Zhuang X (2016) Spatial organization shapes the turnover of a bacterial transcriptome. elife 5:e13065

    PubMed  PubMed Central  Google Scholar 

  • Mohl DA, Easter J Jr, Gober JW (2001) The chromosome partitioning protein, ParB, is required for cytokinesis in Caulobacter crescentus. Mol Microbiol 42(3):741–755

    CAS  PubMed  Google Scholar 

  • Møller-Jensen J, Jensen RB, Lӧwe J, Gerdes K (2002) Prokaryotic DNA segregation by an actin-like filament. EMBO J 21(12):3119–3127

    PubMed  PubMed Central  Google Scholar 

  • Møller-Jensen J, Borch J, Dam M, Jensen RB, Roepstorff P, Gerdes K (2003) Bacterial mitosis: parM of plasmid R1 moves plasmid DNA by an actin-like insertional polymerization mechanism. Mol Cell 12(6):1477–1487

    PubMed  Google Scholar 

  • Murray SM, Sourjik V (2017) Self-organization and positioning of bacterial protein clusters. Nat Phys 13(10):1006

    CAS  Google Scholar 

  • Nielsen HJ, Li Y, Youngren B, Hansen FG, Austin S (2006a) Progressive segregation of the Escherichia coli chromosome. Mol Microbiol 61(2):383–393

    CAS  PubMed  Google Scholar 

  • Nielsen HJ, Ottesen JR, Youngren B, Austin SJ, Hansen FG (2006b) The Escherichia coli chromosome is organized with the left and right chromosome arms in separate cell halves. Mol Microbiol 62(2):331–338

    CAS  PubMed  Google Scholar 

  • Niki H, Jaffe A, Imamura R, Ogura T, Hiraga S (1991) The new gene mukb codes for a 177 kd protein with coiled-coil domains involved in chromosome partitioning of E. coli. EMBO J 10(1):183–193

    CAS  PubMed  PubMed Central  Google Scholar 

  • Niki H, Yamaichi Y, Hiraga S (2000) Dynamic organization of chromosomal DNA in Escherichia coli. Genes Dev 14(2):212–223

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nolivos S, Upton AL, Badrinarayanan A, Müller J, Zawadzka K, Wiktor J, Gill A, Arciszewska L, Nicolas E, Sherratt D (2016) Matp regulates the coordinated action of topoisomerase IV and MukBEF in chromosome segregation. Nat Commun 7:10466

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pedersen IB, Helgesen E, Flåtten I, Fossum-Raunehaug S, Skarstad K (2017) SeqA structures behind Escherichia coli replication forks affect replication elongation and restart mechanisms. Nucleic Acids Res 45(11):6471–6485

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pogliano J, Pogliano K, Weiss DS, Losick R, Beckwith J (1997) Inactivation of FtsI inhibits constriction of the FtsZ cytokinetic ring and delays the assembly of FtsZ rings at potential division sites. Proc Nat Acad Sci 94(2):559–564

    CAS  PubMed  Google Scholar 

  • Proenca AM, Rang CU, Buetz C, Shi C, Chao L (2018) Age structure landscapes emerge from the equilibrium between aging and rejuvenation in bacterial populations. Nat Commun 9(1):3722

    PubMed  PubMed Central  Google Scholar 

  • Ptacin JL, Shapiro L (2013) Chromosome architecture is a key element of bacterial cellular organization. Cell Microbiol 15(1):45–52

    CAS  PubMed  Google Scholar 

  • Ptacin JL, Lee SF, Garner EC, Toro E, Eckart M, Comolli LR, Moerner WE, Shapiro L (2010) A spindle-like apparatus guides bacterial chromosome segregation. Nat Cell Biol 12(8):791

    CAS  PubMed  PubMed Central  Google Scholar 

  • Raskin DM, de Boer PA (1999) Rapid pole-to- pole oscillation of a protein required for directing division to the middle of Escherichia coli. Proc Nat Acad Sci 96(9):4971–4976

    CAS  PubMed  Google Scholar 

  • Reyes-Lamothe R, Wang X, Sherratt D (2008a) Escherichia coli and its chromosome. Trends Microbiol 16(5):238–245

    CAS  PubMed  Google Scholar 

  • Reyes-Lamothe R, Possoz C, Danilova O, Sherratt DJ (2008b) Independent positioning and action of Escherichia coli replisomes in live cells. Cell 133(1):90–102

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rothfield L, Tagh-Balout A, Shih YL (2005) Spatial control of bacterial division-site placement. Nat Rev Microbiol 3(12):959

    CAS  PubMed  Google Scholar 

  • Shaevitz JW, Gitai Z (2010) The structure and function of bacterial actin homologs. Cold Spring Harbor Perspect Biol 2(9):a000364

    Google Scholar 

  • Shebelut CW, Guberman JM, Van Teeffelen S, Yakhnina AA, Gitai Z (2010) Caulobacter chromosome segregation is an ordered multistep process. Proc Nat Acad Sci 107(32):14194–14198

    CAS  PubMed  Google Scholar 

  • Sinha AK, Possoz C, Durand A, Desfontaines JM, Barre FX, Leach DR, Michel B (2018) Broken replication forks trigger heritable DNA breaks in the terminus of a circular chromosome. PLoS Genet 14(3):e1007256

    PubMed  PubMed Central  Google Scholar 

  • Slater S, Wold S, Lu M, Boye E, Skarstad K, Kleckner N (1995) E. coli SeqA protein binds oriC in two different methyl-modulated reactions appropriate to its roles in DNA replication initiation and origin sequestration. Cell 82(6):927–936

    CAS  PubMed  Google Scholar 

  • Smoluchowski M (1912) Experimental proof of regular thermodynamic conflicting molecular phenomenons. Phys Z 13:1069–1080

    Google Scholar 

  • Soppa J (2001) Prokaryotic structural maintenance of chromosomes (SMC) proteins: distribution, phylogeny, and comparison with MukBs and additional prokaryotic and eukaryotic coiled-coil proteins. Gene 278(1–2):253–264

    CAS  PubMed  Google Scholar 

  • Stewart EJ, Madden R, Paul G, Taddei F (2005) Aging and death in an organism that reproduces by morphologically symmetric division. PLoS Biol 3(2):e45

    PubMed  PubMed Central  Google Scholar 

  • Stouf M, Meile JC, Cornet F (2013) FtsK actively segregates sister chromosomes in Escherichia coli. Proc Nat Acad Sci. 110(27):11157–11162

    CAS  PubMed  Google Scholar 

  • Stracy M, Lesterlin C, De Leon FG, Uphoff S, Zawadzki P, Kapanidis AN (2015) Live-cell superresolution microscopy reveals the organization of RNA polymerase in the bacterial nucleoid. Proc Nat Acad Sci 112(32):E4390–E4399

    CAS  PubMed  Google Scholar 

  • Stylianidou S, Kuwada NJ, Wiggins PA (2014) Cytoplasmic dynamics reveals two modes of nucleoid-dependent mobility. Biophys J 107(11):2684–2692

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sugawara T, Kaneko K (2011) Chemophoresis as a driving force for intracellular organization: theory and application to plasmid partitioning. Biophysics 7:77–88

    CAS  PubMed  PubMed Central  Google Scholar 

  • Surovtsev IV, Jacobs-Wagner C (2018) Subcellular organization: a critical feature of bacterial cell replication. Cell 172(6):1271–1293

    CAS  PubMed  PubMed Central  Google Scholar 

  • Surovtsev IV, Campos M, Jacobs-Wagner C (2016) DNA-relay mechanism is sufficient to explain ParA-dependent intracellular transport and patterning of single and multiple cargos. Proc Nat Acad Sci 113(46):E7268–E7276

    CAS  PubMed  Google Scholar 

  • Thiel A, Valens M, Vallet-Gely I, Espéli O, Boccard F (2012) Long-range chromosome organization in E. coli: a site-specific system isolates the Ter macrodomain. PLoS Gen 8(4):e1002672

    CAS  Google Scholar 

  • Trueba FJ (1982) On the precision and accuracy achieved by Escherichia coli cells at fission about their middle. Arch Microbiol 131(1):55–59

    CAS  PubMed  Google Scholar 

  • Valens M, Penaud S, Rossignol M, Cornet F, Boccard F (2004) Macrodomain organization of the Escherichia coli chromosome. EMBO J 23(21):4330–4341

    CAS  PubMed  PubMed Central  Google Scholar 

  • Valens M, Thiel A, Boccard F (2016) The MaoP/maoS site-specific system organizes the Ori region of the E. coli chromosome into a macrodomain. PLOS Genet 12(9):e1006309

    PubMed  PubMed Central  Google Scholar 

  • Vecchiarelli AG, Mizuuchi K, Funnell BE (2012) Surfing biological surfaces: exploiting the nucleoid for partition and transport in bacteria. Mol Microbiol 86(3):513–523

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vecchiarelli AG, Hwang LC, Mizuuchi K (2013) Cell-free study of F plasmid partition provides evidence for cargo transport by a diffusion-ratchet mechanism. Proc Nat Acad Sci 110(15):E1390–E1397

    CAS  PubMed  Google Scholar 

  • Vecchiarelli AG, Neuman KC, Mizuuchi K (2014) A propagating ATPase gradient drives transport of surface-confined cellular cargo. Proc Nat Acad Sci 111(13):4880–4885

    CAS  PubMed  Google Scholar 

  • Vecchiarelli AG, Li M, Mizuuchi M, Hwang LC, Seol Y, Neuman KC, Mizuuchi K (2016) Membrane-bound MinDE complex acts as a toggle switch that drives Min oscillation coupled to cytoplasmic depletion of MinD. Proc Nat Acad Sci 113(11):E1479–E1488

    CAS  PubMed  Google Scholar 

  • Volkmer B, Heinemann M (2011) Condition-dependent cell volume and concentration of Escherichia coli to facilitate data conversion for systems biology modeling. PLoS One 6(7):e23126

    CAS  PubMed  PubMed Central  Google Scholar 

  • Waldminghaus T, Skarstad K (2009) The Escherichia coli SeqA protein. Plasmid 61(3):141–150

    CAS  PubMed  Google Scholar 

  • Wang X, Liu X, Possoz C, Sherratt DJ (2006) The two Escherichia coli chromosome arms locate to separate cell halves. Genes Dev 20(13):1727–1731

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X, Lesterlin C, Reyes-Lamothe R, Ball G, Sherratt DJ (2011) Replication and segregation of an Escherichia coli chromosome with two replication origins. Proc Nat Acad Sci 108(26):E243–E250

    PubMed  Google Scholar 

  • Weitao T, Nordstrӧm K, Dasgupta S (1999) Mutual suppression of mukB and seqA phenotypes might arise from their opposing influences on the Escherichia coli nucleoid structure. Mol Microbiol 34(1):157–168

    CAS  PubMed  Google Scholar 

  • White MA, Eykelenboom JK, Lopez-Vernaza MA, Wilson E, Leach DR (2008) Non-random segregation of sister chromosomes in Escherichia coli. Nature 455(7217):1248

    CAS  PubMed  Google Scholar 

  • Wiggins PA, Cheveralls KC, Martin JS, Lintner R, Kondev J (2010) Strong intranucleoid interactions organize the Escherichia coli chromosome into a nucleoid filament. Proc Nat Acad Sci 107(11):4991–4995

    CAS  PubMed  Google Scholar 

  • Woldringh C, Huls P, Pas E, Brakenhoff G, Nanninga N (1987) Topography of peptidoglycan synthesis during elongation and polar cap formation in a cell division mutant of Escherichia coli MC4100. Microbiology 133(3):575–586

    CAS  Google Scholar 

  • Woldringh C, Mulder E, Huls P, Vischer N (1991) Toporegulation of bacterial division according to nucleoid occlusion model. Res Microbiol 142(2–3):309–320

    CAS  PubMed  Google Scholar 

  • Wu F, Japaridze A, Zheng X, Wiktor J, Kerssemakers JW, Dekker C (2019a) Direct imaging of the circular chromosome in a live bacterium. Nat Commun 10(1):2194

    PubMed  PubMed Central  Google Scholar 

  • Wu F, Swain P, Kuijpers L, Zheng X, Felter K, Guurink M, Solari J, Jun S, Shimizu TS, Chaudhuri D, Mulder B (2019b) Cell boundary confinement sets the size and position of the E. coli chromosome. Curr Biol 29:2131–2144

    CAS  PubMed  Google Scholar 

  • Yang X, Lyu Z, Miguel A, McQuillen R, Huang KC, Xiao J (2017) GTPase activity-coupled treadmilling of the bacterial tubulin FtsZ organizes septal cell wall synthesis. Science 355(6326):744–747

    CAS  PubMed  PubMed Central  Google Scholar 

  • Youngren B, Nielsen HJ, Jun S, Austin S (2014) The multifork Escherichia coli chromosome is a self-duplicating and self-segregating thermodynamic ring polymer. Genes Dev 28(1):71–84

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yu XC, Margolin W (1999) FtsZ ring clusters in min and partition mutants: role of both the Min system and the nucleoid in regulating FtsZ ring localization. Mol Microbiol 32(2):315–326

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Special thanks to Austin Lott for early assistance in tracking down references. This work was supported by the Central Washington University College of the Sciences Faculty Early Career Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nathan J. Kuwada.

Additional information

Communicated by M. Kupiec.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kisner, J.R., Kuwada, N.J. Nucleoid-mediated positioning and transport in bacteria. Curr Genet 66, 279–291 (2020). https://doi.org/10.1007/s00294-019-01041-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00294-019-01041-2

Keywords

Navigation