Skip to main content
Log in

Hydrogen peroxide, a potent inducer of global genomic instability

  • Mini-Review
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

Oxidative stress has been implicated in a variety of human diseases. One plausible mechanism is that reactive active species can induce DNA damages and jeopardize genome integrity. To explore how oxidative stress results in global genomic instability in cells, our current study examined the genomic alterations caused by H2O2 exposure at the whole genome level in yeast. Using SNP microarrays and genome sequencing, we mapped H2O2-induced genomic alterations in the yeast genome ranging from point mutations and mitotic recombination to chromosomal aneuploidy. Our results suggested most H2O2-induced mitotic recombination events were the result of DNA double-stand breaks generated by hydroxyl radicals. Moreover, the mutagenic effect of H2O2 was shown to be largely dependent on DNA polymerase ζ. Lastly, we showed that H2O2 exposure allows rapid phenotypic evolution in yeast strains. Our findings indicate DNA lesions resulting from H2O2 may be general factors that drive genome instability and phenotypic evolution in organisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Balasubramanian B, Pogozelski WK, Tullius TD (1998) DNA strand breaking by the hydroxyl radical is governed by the accessible surface areas of the hydrogen atoms of the DNA backbone. Proc Natl Acad Sci USA 95:9738–9743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cadet J, Davies KJA (2017) Oxidative DNA damage & repair: an introduction. Free Radic Biol Med 107:2–12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheignon C, Tomas M, Bonnefont-Rousselot D, Faller P, Hureau C, Collin F (2018) Oxidative stress and the amyloid beta peptide in Alzheimer’s disease. Redox Biol 14:450–464

    Article  CAS  PubMed  Google Scholar 

  • Cooke MS, Evans MD, Miral D, Joseph L (2003) Oxidative DNA damage: mechanisms, mutation, and disease. FASEB J 17:1195–1214

    Article  CAS  PubMed  Google Scholar 

  • Correa R, Thornton PC, Rosenberg SM, Hastings P (2018) Oxygen and RNA in stress-induced mutation. Curr Genet 64:769–776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • David SS, O’Shea VL, Kundu S (2007) Base-excision repair of oxidative DNA damage. Nature 447:941–950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Degtyareva NP, Heyburn L, Sterling J, Resnick MA, Gordenin DA, Doetsch PW (2013) Oxidative stress-induced mutagenesis in single-strand DNA occurs primarily at cytosines and is DNA polymerase zeta-dependent only for adenines and guanines. Nucleic Acids Res 41:8995–9005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fedoseeva IV, Pyatrikas DV, Stepanov AV, Fedyaeva AV, Varakina NN, Rusaleva TM, Borovskii GB, Rikhvanov EG (2017) The role of flavin-containing enzymes in mitochondrial membrane hyperpolarization and ROS production in respiring Saccharomyces cerevisiae cells under heat-shock conditions. Sci Rep 7:2586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Friedberg EC, Walker GC, Siede W, Wood RD (2005) DNA repair and mutagenesis. American Society for Microbiology Press, Washington, DC

    Google Scholar 

  • Harari Y, Ram Y, Kupiec M (2018) Frequent ploidy changes in growing yeast cultures. Curr Genet 64(5):1001–1004

    Article  CAS  PubMed  Google Scholar 

  • Kunz BA, Ramachandran K, Vonarx EJ (1998) DNA sequence analysis of spontaneous mutagenesis in Saccharomyces cerevisiae. Genetics 148:1491–1505

    CAS  PubMed  PubMed Central  Google Scholar 

  • Matic I (2018) The major contribution of the DNA damage-triggered reactive oxygen species production to cell death: implications for antimicrobial and cancer therapy. Curr Genet 64(3):567–569

    Article  CAS  PubMed  Google Scholar 

  • Mizutani T, Sumida H, Sagawa Y, Okano Y, Masaki H (2016) ROS generation from the stratum corneum under UV irradiation. J Dermatol Sci 84:e78–e79

    Article  Google Scholar 

  • Northam MR, Robinson HA, Kochenova OV, Shcherbakova PV (2010) Participation of DNA polymerase zeta in replication of undamaged DNA in Saccharomyces cerevisiae. Genetics 184:27–42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poprac P, Jomova K, Simunkova M, Kollar V, Rhodes CJ, Valko M (2017) Targeting free radicals in oxidative stress-related human diseases. Trends Pharmacol Sci 38:592–607

    Article  CAS  PubMed  Google Scholar 

  • Sies H (2014) Role of metabolic H2O2 generation redox signaling and oxidative stress. J Biol Chem 289:8735–8741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sies H, Berndt C, Jones DP (2017) Oxidative stress. Annu Rev Biochem 86:715–748

    Article  CAS  PubMed  Google Scholar 

  • Spitz DR, Li GC, McCormick ML, Sun Y, Oberley LW (1988) Stable H2O2-resistant variants of Chinese hamster fibroblasts demonstrate increases in catalase activity. Radiat Res 114:114–124

    Article  CAS  PubMed  Google Scholar 

  • St Charles J, Petes TD (2013) High-resolution mapping of spontaneous mitotic recombination hotspots on the 1.1 Mb arm of yeast chromosome IV. PLoS Genet 9:e1003434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Strope PK, Skelly DA, Kozmin SG, Mahadevan G, Stone EA, Magwene PM, Dietrich FS, McCusker JH (2015) The 100-genomes strains, an S. cerevisiae resource that illuminates its natural phenotypic and genotypic variation and emergence as an opportunistic pathogen. Genome Res 25:762–774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Szwajczak E, Fijalkowska IJ, Suski C (2018) The importance of an interaction network for proper DNA polymerase ζ heterotetramer activity. Curr Genet 64:575–580

    Article  CAS  PubMed  Google Scholar 

  • Takagi H, Taguchi J, Kaino T (2016) Proline accumulation protects Saccharomyces cerevisiae cells in stationary phase from ethanol stress by reducing reactive oxygen species levels. Yeast 33:355–363

    Article  CAS  PubMed  Google Scholar 

  • Thanan R, Oikawa S, Hiraku Y, Ohnishi S, Ma N, Pinlaor S, Yongvanit P, Kawanishi S, Murata M (2015) Oxidative stress and its significant roles in neurodegenerative diseases and cancer. Int J Mol Sci 16:193–217

    Article  CAS  Google Scholar 

  • Yin Y, Petes TD (2013) Genome-wide high-resolution mapping of UV-induced mitotic recombination events in Saccharomyces cerevisiae. PLoS Genet 9:e1003894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang K, Zhang LJ, Fang YH, Jin XN, Qi L, Wu XC, Zheng DQ (2016) Genomic structural variation contributes to phenotypic change of industrial bioethanol yeast Saccharomyces cerevisiae. FEMS Yeast Res 16:fov118

    Article  CAS  PubMed  Google Scholar 

  • Zhang K, Di YN, Qi L, Sui Y, Wang TY, Fan L, Lv ZM, Wu XC, Wang PM, Zheng DQ (2018) Genetic characterization and modification of a bioethanol-producing yeast strain. Appl Microbiol Biotechnol 102:2213–2223

    Article  CAS  PubMed  Google Scholar 

  • Zhang K, Zheng D-Q, Sui Y, Qi L, Petes DT (2019) Genome-wide analysis of genomic alterations induced by oxidative DNA damage in yeast. Nucleic Acids Res. https://doi.org/10.1093/nar/gkz027

    Article  PubMed  PubMed Central  Google Scholar 

  • Zheng D-Q, Petes T (2018) Genome instability induced by low levels of replicative DNA polymerases in yeast. Genes 9:539

    Article  CAS  PubMed Central  Google Scholar 

  • Zheng DQ, Zhang K, Wu XC, Mieczkowski PA, Petes TD (2016) Global analysis of genomic instability caused by DNA replication stress in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 113:E8114–E8121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu YO, Siegal ML, Hall DW, Petrov DA (2014) Precise estimates of mutation rate and spectrum in yeast. Proc Natl Acad Sci USA 111:E2310–E2318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research was funded by the Natural Science Foundation of Zhejiang Province (LY18C060002) and the Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dao-Qiong Zheng.

Additional information

Communicated by M. Kupiec.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qi, L., Wu, XC. & Zheng, DQ. Hydrogen peroxide, a potent inducer of global genomic instability. Curr Genet 65, 913–917 (2019). https://doi.org/10.1007/s00294-019-00969-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00294-019-00969-9

Keywords

Navigation