Skip to main content

Genomic Instability in Carcinogenesis

The Role of Oxidative Stress

  • Living reference work entry
  • First Online:
Handbook of Oxidative Stress in Cancer: Mechanistic Aspects

Abstract

Genomic instability is one of the hallmarks of cancer. Several theories have been put forth to ascertain this departure from the normal state as being the driver of tumorigenesis or as its final manifestation. Two such theories, the mutator phenotype hypothesis and the oncogene induced replication stress model, have attempted to resolve this dichotomy. However, the source of the mutations implicit in these theories has remained unaddressed in the context of genomic instability. One likely source is the oxidative stress caused by an uncounterable surge of reactive chemical species like reactive oxygen species (ROS) and reactive nitrogen species (RNS). Such species undergo various chemical reactions with different biomolecules present in the cell, most importantly with the DNA and the proteins involved in the maintenance of the genome, leading to the loss of cellular homeostasis and genomic instability. This chapter aims to explicate how oxidative stress drives genetic instability and thus cancer development through interactions with DNA, proteins, and lipids. It also touches upon the mechanisms the stressed cells employ to reset the homeostasis and how the failure of such means ultimately leads to the loss of genetic integrity and the onset of carcinogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Basu AK, Wood ML, Niedernhofer LJ, Ramos LA, Essigmann JM (1993) Mutagenic and genotoxic effects of three vinyl chloride-induced DNA lesions: 1,N6-ethenoadenine, 3,N4-ethenocytosine, and 4-amino-5-(imidazol-2-yl)imidazole. Biochemistry 32(47):12793–12801

    Article  CAS  PubMed  Google Scholar 

  • Cellai F, Munnia A, Viti J, Doumett S, Ravagli C, Ceni E, Mello T, Polvani S, Giese RW, Baldi G, Galli A, Peluso MEM (2017) Magnetic hyperthermia and oxidative damage to DNA of human Hepatocarcinoma cells. Int J Mol Sci 18(5):939

    Article  PubMed Central  CAS  Google Scholar 

  • Chatterjee N, Walker GC (2017) Mechanisms of DNA damage, repair, and mutagenesis. Environ Mol Mutagen 58(5):235–263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crighton D, Wilkinson S, O’Prey J, Syed N, Smith P, Harrison PR, Gasco M, Garrone O, Crook T, Ryan KM (2006) DRAM, a p53-induced modulator of autophagy, is critical for apoptosis. Cell 126(1):121–134

    Article  CAS  PubMed  Google Scholar 

  • D’Angiolella V, Santarpia C, Grieco D (2007) Oxidative stress overrides the spindle checkpoint. Cell Cycle 6(5):576–579

    Article  PubMed  Google Scholar 

  • Dyavaiah M, Rooney JP, Chittur SV, Lin Q, Begley TJ (2011) Autophagy-dependent regulation of the DNA damage response protein ribonucleotide reductase 1. Mol Cancer Res 9(4):462–475

    Article  CAS  PubMed  Google Scholar 

  • Filomeni G, De Zio D, Cecconi F (2015) Oxidative stress and autophagy: the clash between damage and metabolic needs. Cell Death Differ 22(3):377–388

    Article  CAS  PubMed  Google Scholar 

  • Grune T, Davies KJ (2003) The proteasomal system and HNE-modified proteins. Mol Asp Med 24(4–5):195–204

    Article  CAS  Google Scholar 

  • Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674

    Article  CAS  PubMed  Google Scholar 

  • Hang B, Chenna A, Guliaev AB, Singer B (2003) Miscoding properties of 1,N6-ethanoadenine, a DNA adduct derived from reaction with the antitumor agent 1,3-bis(2-chloroethyl)-1-nitrosourea. Mutat Res 531(1–2):191–203

    Article  CAS  PubMed  Google Scholar 

  • Huang H, Wang H, Qi N, Lloyd RS, Rizzo CJ, Stone MP (2008) The stereochemistry of trans-4-hydroxynonenal-derived exocyclic 1,N2-2′-deoxyguanosine adducts modulates formation of interstrand cross-links in the 5′-CpG-3′ sequence. Biochemistry 47(44):11457–11472

    Article  CAS  PubMed  Google Scholar 

  • Hunt CR, Sim JE, Sullivan SJ, Featherstone T, Golden W, Von Kapp-Herr C, Hock RA, Gomez RA, Parsian AJ, Spitz DR (1998) Genomic instability and catalase gene amplification induced by chronic exposure to oxidative stress. Cancer Res 58(17):3986–3992

    CAS  PubMed  Google Scholar 

  • Ichimura Y, Waguri S, Sou YS, Kageyama S, Hasegawa J, Ishimura R, Saito T, Yang Y, Kouno T, Fukutomi T, Hoshii T, Hirao A, Takagi K, Mizushima T, Motohashi H, Lee MS, Yoshimori T, Tanaka K, Yamamoto M, Komatsu M (2013) Phosphorylation of p62 activates the Keap1-Nrf2 pathway during selective autophagy. Mol Cell 51(5):618–631

    Article  CAS  PubMed  Google Scholar 

  • Katayama M, Kawaguchi T, Berger MS, Pieper RO (2007) DNA damaging agent-induced autophagy produces a cytoprotective adenosine triphosphate surge in malignant glioma cells. Cell Death Differ 14(3):548–558

    Article  CAS  PubMed  Google Scholar 

  • Kerem B (2017) Oncogene-induced replication stress drives genome instability and tumorigenesis. Int J Mol Sci 18(7):1339

    Article  PubMed Central  CAS  Google Scholar 

  • Khalil HS, Deeni Y (2015) NRF2 inhibition causes repression of ATM and ATR expression leading to aberrant DNA damage response. Bio Discov 15(15):e8964

    Google Scholar 

  • Komatsu M, Kurokawa H, Waguri S, Taguchi K, Kobayashi A, Ichimura Y, Sou YS, Ueno I, Sakamoto A, Tong KI, Kim M, Nishito Y, Iemura S, Natsume T, Ueno T, Kominami E, Motohashi H, Tanaka K, Yamamoto M (2010) The selective autophagy substrate p62 activates the stress responsive transcription factor Nrf2 through inactivation of Keap1. Nat Cell Biol 12(3):213–223

    Article  CAS  PubMed  Google Scholar 

  • Kowalczyk P, Ciesla JM, Komisarski M, Kusmierek JT, Tudek B (2004) Long-chain adducts of trans-4-hydroxy-2-nonenal to DNA bases cause recombination, base substitutions and frameshift mutations in M13 phage. Mutat Res 550(1–2):33–48

    Article  CAS  PubMed  Google Scholar 

  • Limoli CL, Giedzinski E (2003) Induction of chromosomal instability by chronic oxidative stress. Neoplasia 5(4):339–346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Limoli CL, Kaplan MI, Phillips JW, Adair GM, Morgan WF (1997) Differential induction of chromosomal instability by DNA strand-breaking agents. Cancer Res 57(18):4048–4056

    CAS  PubMed  Google Scholar 

  • Lin R, Zhang C, Zheng J, Tian D, Lei Z, Chen D, Xu Z, Su M (2016) Chronic inflammation-associated genomic instability paves the way for human esophageal carcinogenesis. Oncotarget 7(17):24564–24571

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu W, Akhand AA, Kato M, Yokoyama I, Miyata T, Kurokawa K, Uchida K, Nakashima I (1999) 4-hydroxynonenal triggers an epidermal growth factor receptor-linked signal pathway for growth inhibition. J Cell Sci 112(Pt 14):2409–2417

    Article  CAS  PubMed  Google Scholar 

  • Liu L, Trimarchi JR, Smith PJ, Keefe DL (2002) Mitochondrial dysfunction leads to telomere attrition and genomic instability. Aging Cell 1(1):40–46

    Article  CAS  PubMed  Google Scholar 

  • Liu AM, Qu WW, Liu X, Qu CK (2012) Chromosomal instability in in vitro cultured mouse hematopoietic cells associated with oxidative stress. Am J Blood Res 2(1):71–76

    CAS  PubMed  PubMed Central  Google Scholar 

  • Loeb LA (2001) A mutator phenotype in cancer. Cancer Res 61(8):3230–3239

    CAS  PubMed  Google Scholar 

  • Loeb KR, Loeb LA (1999) Genetic instability and the mutator phenotype. Studies in ulcerative colitis. Am J Pathol 154(6):1621–1626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma Q (2013) Role of nrf2 in oxidative stress and toxicity. Annu Rev Pharmacol Toxicol 53:401–426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marnett LJ (1999a) Chemistry and biology of DNA damage by malondialdehyde. IARC Sci Publ 150:17–27

    CAS  Google Scholar 

  • Marnett LJ (1999b) Lipid peroxidation-DNA damage by malondialdehyde. Mutat Res 424(1–2):83–95

    Article  CAS  PubMed  Google Scholar 

  • Moon JJ, Lu A, Moon C (2019) Role of genomic instability in human carcinogenesis. Exp Biol Med (Maywood) 244(3):227–240

    Article  CAS  Google Scholar 

  • Moriya M, Zhang W, Johnson F, Grollman AP (1994) Mutagenic potency of exocyclic DNA adducts: marked differences between Escherichia coli and simian kidney cells. Proc Natl Acad Sci U S A 91(25):11899–11903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moskovitz AH, Linford NJ, Brentnall TA, Bronner MP, Storer BE, Potter JD, Bell RH Jr, Rabinovitch PS (2003) Chromosomal instability in pancreatic ductal cells from patients with chronic pancreatitis and pancreatic adenocarcinoma. Genes Chromosomes Cancer 37(2):201–206

    Article  PubMed  Google Scholar 

  • Primo LMF, Teixeira LK (2019) DNA replication stress: oncogenes in the spotlight. Genet Mol Biol 43(1 suppl 1):e20190138

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Radisky DC, Levy DD, Littlepage LE, Liu H, Nelson CM, Fata JE, Leake D, Godden EL, Albertson DG, Nieto MA, Werb Z, Bissell MJ (2005) Rac1b and reactive oxygen species mediate MMP-3-induced EMT and genomic instability. Nature 436(7047):123–127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ren L, Chen L, Wu W, Garribba L, Tian H, Liu Z, Vogel I, Li C, Hickson ID, Liu Y (2017) Potential biomarkers of DNA replication stress in cancer. Oncotarget 8(23):36996–37008

    Article  PubMed  PubMed Central  Google Scholar 

  • Sabourin M, Osheroff N (2000) Sensitivity of human type II topoisomerases to DNA damage: stimulation of enzyme-mediated DNA cleavage by abasic, oxidized and alkylated lesions. Nucleic Acids Res 28(9):1947–1954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sallmyr A, Fan J, Rassool FV (2008) Genomic instability in myeloid malignancies: increased reactive oxygen species (ROS), DNA double strand breaks (DSBs) and error-prone repair. Cancer Lett 270(1):1–9

    Article  CAS  PubMed  Google Scholar 

  • Samper E, Nicholls DG, Melov S (2003) Mitochondrial oxidative stress causes chromosomal instability of mouse embryonic fibroblasts. Aging Cell 2(5):277–285

    Article  CAS  PubMed  Google Scholar 

  • Schaur RJ (2003) Basic aspects of the biochemical reactivity of 4-hydroxynonenal. Mol Asp Med 24(4–5):149–159

    Article  CAS  Google Scholar 

  • Scherz-Shouval R, Weidberg H, Gonen C, Wilder S, Elazar Z, Oren M (2010) p53-dependent regulation of autophagy protein LC3 supports cancer cell survival under prolonged starvation. Proc Natl Acad Sci U S A 107(43):18511–18516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shimura T, Sasatani M, Kamiya K, Kawai H, Inaba Y, Kunugita N (2016) Mitochondrial reactive oxygen species perturb AKT/cyclin D1 cell cycle signaling via oxidative inactivation of PP2A in lowdose irradiated human fibroblasts. Oncotarget 7(3):3559–3570

    Article  PubMed  Google Scholar 

  • Singh B, Chatterjee A, Ronghe AM, Bhat NK, Bhat HK (2013) Antioxidant-mediated up-regulation of OGG1 via NRF2 induction is associated with inhibition of oxidative DNA damage in estrogen-induced breast cancer. BMC Cancer 13:253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Slane BG, Aykin-Burns N, Smith BJ, Kalen AL, Goswami PC, Domann FE, Spitz DR (2006) Mutation of succinate dehydrogenase subunit C results in increased O2.-, oxidative stress, and genomic instability. Cancer Res 66(15):7615–7620

    Article  CAS  PubMed  Google Scholar 

  • Talaska G, Au WW, Ward JB Jr, Randerath K, Legator MS (1987) The correlation between DNA adducts and chromosomal aberrations in the target organ of benzidine exposed, partially-hepatectomized mice. Carcinogenesis 8(12):1899–1905

    Article  CAS  PubMed  Google Scholar 

  • Thomson GJ, Hernon C, Austriaco N, Shapiro RS, Belenky P, Bennett RJ (2019) Metabolism-induced oxidative stress and DNA damage selectively trigger genome instability in polyploid fungal cells. EMBO J 38(19):e101597

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • West JD, Marnett LJ (2005) Alterations in gene expression induced by the lipid peroxidation product, 4-hydroxy-2-nonenal. Chem Res Toxicol 18(11):1642–1653

    Article  CAS  PubMed  Google Scholar 

  • Willenbucher RF, Aust DE, Chang CG, Zelman SJ, Ferrell LD, Moore DH 2nd, Waldman FM (1999) Genomic instability is an early event during the progression pathway of ulcerative-colitis-related neoplasia. Am J Pathol 154(6):1825–1830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wolfle WT, Johnson RE, Minko IG, Lloyd RS, Prakash S, Prakash L (2006) Replication past a trans-4-hydroxynonenal minor-groove adduct by the sequential action of human DNA polymerases iota and kappa. Mol Cell Biol 26(1):381–386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yao Y, Dai W (2014) Genomic instability and Cancer. J Carcinog Mutagen 5:1000165

    PubMed  PubMed Central  Google Scholar 

  • Zeman MK, Cimprich KA (2014) Causes and consequences of replication stress. Nat Cell Biol 16(1):2–9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgment

SN is supported by Early Career Award, Science & Engineering Research Board (SERB)-Dept. of Science and Technology (DST), Govt Of India (File No. ECR/2015/000206) and Grant-in-Aid, Department of Science & Technology and Biotechnology (DSTBT), Govt. of West Bengal (FST/P/S&T/9G-21/2016) and, Extra mural research grant, Science & Engineering Research Board (SERB)-Dept. of Science and Technology (DST), Govt Of India (File No.EMR/2015/001835). SR is supported by University Grants Commission- Junior Research Fellowship (UGC Ref. No.:771/CSIR-UGC NET-2017).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Nath, S., Roy, S. (2021). Genomic Instability in Carcinogenesis. In: Chakraborti, S., Ray, B.K., Roychowdhury, S. (eds) Handbook of Oxidative Stress in Cancer: Mechanistic Aspects. Springer, Singapore. https://doi.org/10.1007/978-981-15-4501-6_155-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-4501-6_155-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-4501-6

  • Online ISBN: 978-981-15-4501-6

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics