Skip to main content
Log in

Pseudomonas aeruginosa Lon and ClpXP proteases: roles in linking carbon catabolite repression system with quorum-sensing system

  • Review
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

Quorum sensing (QS) plays critical roles in virulence gene expression and the pathogenesis of Pseudomonas aeruginosa, an important human pathogen. However, the regulatory effects, especially that occur directly upstream of the QS system, remain largely unknown. Here, we review recent advances in the understanding of the key component of carbon catabolite repression (CCR) system and protein quality control (PQC) system in regulating the QS system in P. aeruginosa. We propose that PQC proteases Lon and ClpXP may have an important role in linking CCR with QS, and thus contribute to the integration of nutritional cues into the regulatory network governing the virulence factors expression in P. aeruginosa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Allen RC, Popat R, Diggle SP, Brown SP (2014) Targeting virulence: can we make evolution-proof drugs? Nat Rev Microbiol 12:300–308

    Article  CAS  PubMed  Google Scholar 

  • Balasubramanian D, Schneper L, Kumari H, Mathee K (2013) A dynamic and intricate regulatory network determines Pseudomonas aeruginosa virulence. Nucleic Acids Res 41:1–20

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Barczak AK, Hung DT (2009) Productive steps toward an antimicrobial targeting virulence. Curr Opin Microbiol 12:490–496

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Brazas MD, Breidenstein EB, Overhage J, Hancock RE (2007) Role of lon, an ATP-dependent protease homolog, in resistance of Pseudomonas aeruginosa to ciprofloxacin. Antimicrob Agents Chemother 51:4276–4283

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Breidenstein EB, Hancock RE (2013) Armand-Frappier outstanding student award—role of ATP-dependent proteases in antibiotic resistance and virulence. Can J Microbiol 59:1–8

    Article  CAS  PubMed  Google Scholar 

  • Breidenstein EB, Janot L, Strehmel J, Fernandez L, Taylor PK, Kukavica-Ibrulj I, Gellatly SL, Levesque RC, Overhage J, Hancock RE (2012) The Lon protease is essential for full virulence in Pseudomonas aeruginosa. PLoS One 7:e49123

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bretz J, Losada L, Lisboa K, Hutcheson SW (2002) Lon protease functions as a negative regulator of type III protein secretion in Pseudomonas syringae. Mol Microbiol 45:397–409

    Article  CAS  PubMed  Google Scholar 

  • Brotz-Oesterhelt H, Sass P (2014) Bacterial caseinolytic proteases as novel targets for antibacterial treatment. Int J Med Microbiol IJMM 304:23–30

    Article  PubMed  Google Scholar 

  • Brotz-Oesterhelt H, Beyer D, Kroll HP, Endermann R, Ladel C, Schroeder W, Hinzen B, Raddatz S, Paulsen H, Henninger K, Bandow JE, Sahl HG, Labischinski H (2005) Dysregulation of bacterial proteolytic machinery by a new class of antibiotics. Nat Med 11:1082–1087

    Article  PubMed  Google Scholar 

  • Cao Q, Wang Y, Chen F, Xia Y, Lou J, Zhang X, Yang N, Sun X, Zhang Q, Zhuo C, Huang X, Deng X, Yang CG, Ye Y, Zhao J, Wu M, Lan L (2014) A novel signal transduction pathway that modulates rhl quorum sensing and bacterial virulence in Pseudomonas aeruginosa. PLoS Pathog 10:e1004340

    Article  PubMed Central  PubMed  Google Scholar 

  • Cegelski L, Marshall GR, Eldridge GR, Hultgren SJ (2008) The biology and future prospects of antivirulence therapies. Nat Rev Microbiol 6:17–27

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Coggan KA, Wolfgang MC (2012) Global regulatory pathways and cross-talk control pseudomonas aeruginosa environmental lifestyle and virulence phenotype. Curr Issue Mol Biol 14:47–70

    CAS  Google Scholar 

  • Dandekar AA, Greenberg EP (2013) Microbiology: plan B for quorum sensing. Nat Chem Biol 9:292–293

    Article  CAS  PubMed  Google Scholar 

  • Fernandez L, Breidenstein EB, Song D, Hancock RE (2012) Role of intracellular proteases in the antibiotic resistance, motility, and biofilm formation of Pseudomonas aeruginosa. Antimicrob Agents Chemother 56:1128–1132

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gorke B, Stulke J (2008) Carbon catabolite repression in bacteria: many ways to make the most out of nutrients. Nat Rev Microbiol 6:613–624

    Article  PubMed  Google Scholar 

  • Gottesman S (1996) Proteases and their targets in Escherichia coli. Annu Rev Genet 30:465–506

    Article  CAS  PubMed  Google Scholar 

  • Gottesman S, Wickner S, Maurizi MR (1997) Protein quality control: triage by chaperones and proteases. Genes Dev 11:815–823

    Article  CAS  PubMed  Google Scholar 

  • Jimenez PN, Koch G, Thompson JA, Xavier KB, Cool RH, Quax WJ (2012) The multiple signaling systems regulating virulence in Pseudomonas aeruginosa. Microbiol Mol Biol Rev MMBR 76:46–65

    Article  CAS  PubMed  Google Scholar 

  • Kaufmann GF, Park J, Janda KD (2008) Bacterial quorum sensing: a new target for anti-infective immunotherapy. Expert Opin Biol Ther 8:719–724

    Article  CAS  PubMed  Google Scholar 

  • Kohler T, Guanella R, Carlet J, van Delden C (2010) Quorum sensing-dependent virulence during Pseudomonas aeruginosa colonisation and pneumonia in mechanically ventilated patients. Thorax 65:703–710

    Article  PubMed  Google Scholar 

  • Lan L, Deng X, Xiao Y, Zhou JM, Tang X (2007) Mutation of Lon protease differentially affects the expression of Pseudomonas syringae type III secretion system genes in rich and minimal media and reduces pathogenicity. Mol Plant-microbe Interact MPMI 20:682–696

    Article  CAS  PubMed  Google Scholar 

  • Laskowska E, Kuczynska-Wisnik D, Skorko-Glonek J, Taylor A (1996) Degradation by proteases Lon, Clp and HtrA, of Escherichia coli proteins aggregated in vivo by heat shock; HtrA protease action in vivo and in vitro. Mol Microbiol 22:555–571

    Article  CAS  PubMed  Google Scholar 

  • Lee J, Zhang L (2015) The hierarchy quorum sensing network in Pseudomonas aeruginosa. Protein Cell 6:26–41

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Liang H, Duan J, Sibley CD, Surette MG, Duan K (2011) Identification of mutants with altered phenazine production in Pseudomonas aeruginosa. J Med Microbiol 60:22–34

    Article  CAS  PubMed  Google Scholar 

  • Losada LC, Hutcheson SW (2005) Type III secretion chaperones of Pseudomonas syringae protect effectors from Lon-associated degradation. Mol Microbiol 55:941–953

    Article  CAS  PubMed  Google Scholar 

  • Lyczak JB, Cannon CL, Pier GB (2002) Lung infections associated with cystic fibrosis. Clin Microbiol Rev 15:194–222

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Madhushani A, Del Peso-Santos T, Moreno R, Rojo F, Shingler V (2015) Transcriptional and translational control through the 5′-leader region of the dmpR master regulatory gene of phenol metabolism. Environ Microbiol 17:119–133

    Article  CAS  PubMed  Google Scholar 

  • Marr AK, Overhage J, Bains M, Hancock RE (2007) The Lon protease of Pseudomonas aeruginosa is induced by aminoglycosides and is involved in biofilm formation and motility. Microbiology 153:474–482

    Article  CAS  PubMed  Google Scholar 

  • Maurizi MR (1992) Proteases and protein degradation in Escherichia coli. Experientia 48:178–201

    Article  CAS  PubMed  Google Scholar 

  • McGillivray SM, Tran DN, Ramadoss NS, Alumasa JN, Okumura CY, Sakoulas G, Vaughn MM, Zhang DX, Keiler KC, Nizet V (2012) Pharmacological inhibition of the ClpXP protease increases bacterial susceptibility to host cathelicidin antimicrobial peptides and cell envelope-active antibiotics. Antimicrob Agents Chemother 56:1854–1861

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • National Nosocomial Infections Surveillance (2004) National Nosocomial Infections Surveillance (NNIS) System Report, data summary from January 1992 through June 2004, issued October 2004. Am J Infect Control 32:470–485

    Article  Google Scholar 

  • Ollinger J, O’Malley T, Kesicki EA, Odingo J, Parish T (2012) Validation of the essential ClpP protease in Mycobacterium tuberculosis as a novel drug target. J Bacteriol 194:663–668

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Poncet S, Milohanic E, Maze A, Nait Abdallah J, Ake F, Larribe M, Deghmane AE, Taha MK, Dozot M, De Bolle X, Letesson JJ, Deutscher J (2009) Correlations between carbon metabolism and virulence in bacteria. Contrib Microbiol 16:88–102

    Article  CAS  PubMed  Google Scholar 

  • Rasko DA, Sperandio V (2010) Anti-virulence strategies to combat bacteria-mediated disease. Nat Rev Drug Discovery 9:117–128

    Article  CAS  PubMed  Google Scholar 

  • Rojo F (2010) Carbon catabolite repression in Pseudomonas: optimizing metabolic versatility and interactions with the environment. FEMS Microbiol Rev 34:658–684

    Article  CAS  PubMed  Google Scholar 

  • Rutherford ST, Bassler BL (2012) Bacterial quorum sensing: its role in virulence and possibilities for its control. Cold Spring Harbor Perspect Med 2:a012427

    Article  Google Scholar 

  • Schiefer A, Vollmer J, Lammer C, Specht S, Lentz C, Ruebsamen-Schaeff H, Brotz-Oesterhelt H, Hoerauf A, Pfarr K (2013) The ClpP peptidase of Wolbachia endobacteria is a novel target for drug development against filarial infections. J Antimicrob Chemother 68:1790–1800

    Article  CAS  PubMed  Google Scholar 

  • Smith RS, Iglewski BH (2003) P. aeruginosa quorum-sensing systems and virulence. Curr Opin Microbiol 6:56–60

    Article  CAS  PubMed  Google Scholar 

  • Sonnleitner E, Blasi U (2014) Regulation of Hfq by the RNA CrcZ in Pseudomonas aeruginosa carbon catabolite repression. PLoS Genet 10:e1004440

    Article  PubMed Central  PubMed  Google Scholar 

  • Sonnleitner E, Schuster M, Sorger-Domenigg T, Greenberg EP, Blasi U (2006) Hfq-dependent alterations of the transcriptome profile and effects on quorum sensing in Pseudomonas aeruginosa. Mol Microbiol 59:1542–1558

    Article  CAS  PubMed  Google Scholar 

  • Stover CK, Pham XQ, Erwin AL, Mizoguchi SD, Warrener P, Hickey MJ, Brinkman FS, Hufnagle WO, Kowalik DJ, Lagrou M, Garber RL, Goltry L, Tolentino E, Westbrock-Wadman S, Yuan Y, Brody LL, Coulter SN, Folger KR, Kas A, Larbig K, Lim R, Smith K, Spencer D, Wong GK, Wu Z, Paulsen IT, Reizer J, Saier MH, Hancock RE, Lory S, Olson MV (2000) Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature 406:959–964

    Article  CAS  PubMed  Google Scholar 

  • Suga H, Smith KM (2003) Molecular mechanisms of bacterial quorum sensing as a new drug target. Curr Opin Chem Biol 7:586–591

    Article  CAS  PubMed  Google Scholar 

  • Takaya A, Tabuchi F, Tsuchiya H, Isogai E, Yamamoto T (2008) Negative regulation of quorum-sensing systems in Pseudomonas aeruginosa by ATP-dependent Lon protease. J Bacteriol 190:4181–4188

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Takeuchi K, Tsuchiya W, Noda N, Suzuki R, Yamazaki T, Haas D (2014) Lon protease negatively affects GacA protein stability and expression of the Gac/Rsm signal transduction pathway in Pseudomonas protegens. Environ Microbiol 16:2538–2549

    Article  CAS  PubMed  Google Scholar 

  • Whiteley M, Lee KM, Greenberg EP (1999) Identification of genes controlled by quorum sensing in Pseudomonas aeruginosa. Proc Natl Acad Sci USA 96:13904–13909

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wickner S, Maurizi MR, Gottesman S (1999) Posttranslational quality control: folding, refolding, and degrading proteins. Science 286:1888–1893

    Article  CAS  PubMed  Google Scholar 

  • Williams P, Camara M (2009) Quorum sensing and environmental adaptation in Pseudomonas aeruginosa: a tale of regulatory networks and multifunctional signal molecules. Curr Opin Microbiol 12:182–191

    Article  CAS  PubMed  Google Scholar 

  • Yang HJ, Lee JS, Cha JY, Baik HS (2011) Negative regulation of pathogenesis in Pseudomonas syringae pv. tabaci 11528 by ATP-dependent Lon protease. Mol Cells 32:317–323

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yang N, Ding S, Chen F, Zhang X, Xia Y, Di H, Cao Q, Deng X, Wu M, Wong CC, Tian XX, Yang CG, Zhao J, Lan L (2015) The Crc protein participates in down-regulation of the Lon gene to promote rhamnolipid production and rhl quorum sensing in Pseudomonas aeruginosa. Mol Microbiol 96:526–547

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Gao Q, Chen W, Qin H, Hengzhuang W, Chen Y, Yang L, Zhang G (2013) Regulation of pqs quorum sensing via catabolite repression control in Pseudomonas aeruginosa. Microbiology 159:1931–1936

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China Grants (31270126) (to L.L) and Shanghai Committee of Science and Technology Grants (12JC1410200) (to L.L). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lefu Lan.

Additional information

Communicated by M. Kupiec.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, N., Lan, L. Pseudomonas aeruginosa Lon and ClpXP proteases: roles in linking carbon catabolite repression system with quorum-sensing system. Curr Genet 62, 1–6 (2016). https://doi.org/10.1007/s00294-015-0499-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00294-015-0499-5

Keywords

Navigation