Skip to main content
Log in

An integrated view on a eukaryotic osmoregulation system

  • Research Article
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

Osmoregulation encompasses active homeostatic processes that ensure proper cell volume, shape and turgor as well as an intercellular milieu optimal for the diverse biochemical processes. Recent studies demonstrate that yeast cells operate within a tight window of cellular water concentrations that still allows rapid diffusion of biomolecules while already moderate cell compression following hyper-osmotic stress leads to macromolecular crowding and a slow-down of cellular processes. Yeast cells accumulate glycerol as compatible osmolyte under hyper-osmotic stress to regain cell volume and turgor and release glycerol following a hypo-osmotic shock. The high osmolarity glycerol (HOG) response pathway controls glycerol accumulation at various levels, where each mechanism contributes to the temporal and quantitative pattern of volume recovery: inhibition of glycerol efflux, direct activation of the first enzyme in glycerol biosynthesis, stimulation of glycolytic flux as well as upregulation of expression of genes encoding enzymes in glycerol biosynthesis and an active glycerol uptake system. The HOG mitogen-activated protein kinase (MAPK) pathway communicates with the other yeast MAPK pathways to control cell morphogenesis. Cross-talk between the MAPK pathways has recently been used to re-wire osmostress-controlled expression of glycerol biosynthesis genes from Hog1 to Kss1-Fus3. The results of this study further illustrate the key importance of glycerol accumulation under osmostress and allow studying Hog1-dependent and independent processes as well as redundancy and robustness of the MAPK system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ahmadpour D, Geijer C, Tamas MJ, Lindkvist-Petersson K, Hohmann S (2014) Yeast reveals unexpected roles and regulatory features of aquaporins and aquaglyceroporins. Biochim Biophys Acta 1840:1482–1491

    Article  CAS  PubMed  Google Scholar 

  • Albertyn J, Hohmann S, Thevelein JM, Prior BA (1994) GPD1, which encodes glycerol-3-phosphate dehydrogenase is essential for growth under osmotic stress in Saccharomyces cerevisiae and its expression is regulated by the high-osmolarity glycerol response pathway. Mol Cell Biol 14:4135–4144

    CAS  PubMed Central  PubMed  Google Scholar 

  • Alepuz PM, de Nadal E, Zapater M, Ammerer G, Posas F (2003) Osmostress-induced transcription by Hot1 depends on a Hog1-mediated recruitment of the RNA Pol II. EMBO J 22:2433–2442

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ansell R, Granath K, Hohmann S, Thevelein JM, Adler L (1997) The two isoenzymes for yeast NAD+-dependent glycerol 3-phosphate dehydrogenase encoded by GPD1 and GPD2 have distinct roles in osmoadaptation and redox regulation. EMBO J 16:2179–2187

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Babazadeh R, Adiels CB, Smedh M, Petelenz-Kurdziel E, Goksor M, Hohmann S (2013) Osmostress-induced cell volume loss delays yeast Hog1 signaling by limiting diffusion processes and by Hog1-specific effects. PLoS One 8:e80901

    Article  PubMed Central  PubMed  Google Scholar 

  • Babazadeh R, Furukawa T, Hohmann S, Furukawa K (2014) Rewiring yeast osmostress signalling through the MAPK network reveals essential and non-essential roles of Hog1 in osmoadaptation. Sci Rep 4:4697

    Article  PubMed Central  PubMed  Google Scholar 

  • Baltanas R, Bush A, Couto A, Durrieu L, Hohmann S, Colman-Lerner A (2013) Pheromone-induced morphogenesis improves osmoadaptation capacity by activating the HOG MAPK pathway. Sci Signal 6:ra26

    Article  PubMed Central  PubMed  Google Scholar 

  • Blomberg A, Adler L (1992) Physiology of osmotolerance in fungi. Adv Microb Physiol 33:145–212

    Article  CAS  PubMed  Google Scholar 

  • Boles E, Gohlmann HW, Zimmermann FK (1996) Cloning of a second gene encoding 5-phosphofructo-2-kinase in yeast, and characterization of mutant strains without fructose-2,6-bisphosphate. Mol Microbiol 20:65–76

    Article  CAS  PubMed  Google Scholar 

  • Brewster JL, Gustin MC (2014) Hog1: 20 years of discovery and impact. Sci Signal 7:re7

    Article  PubMed  Google Scholar 

  • Buehrer BM, Errede B (1997) Coordination of the mating and cell integrity mitogen-activated protein kinase pathways in Saccharomyces cerevisiae. Mol Cell Biol 17:6517–6525

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chen RE, Thorner J (2007) Function and regulation in MAPK signaling pathways: lessons learned from the yeast Saccharomyces cerevisiae. Biochim Biophys Acta 1773:1311–1340

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Davenport KD, Williams KE, Ullmann BD, Gustin MC (1999) Activation of the Saccharomyces cerevisiae filamentation/invasion pathway by osmotic stress in high-osmolarity glycogen pathway mutants. Genetics 153:1091–1103

    CAS  PubMed Central  PubMed  Google Scholar 

  • de Nadal E, Ammerer G, Posas F (2011) Controlling gene expression in response to stress. Nat Rev Genet 12:833–845

    PubMed  Google Scholar 

  • Dihazi H, Kessler R, Eschrich K (2001) Phosphorylation and inactivation of yeast 6-phosphofructo-2-kinase contribute to the regulation of glycolysis under hypotonic stress. Biochemistry 40:14669–14678

    Article  CAS  PubMed  Google Scholar 

  • Dihazi H, Kessler R, Eschrich K (2003) Glucose-induced stimulation of the Ras-cAMP pathway in yeast leads to multiple phosphorylations and activation of 6-phosphofructo-2-kinase. Biochemistry 42:6275–6282

    Article  CAS  PubMed  Google Scholar 

  • Dihazi H, Kessler R, Eschrich K (2004) High osmolarity glycerol (HOG) pathway-induced phosphorylation and activation of 6-phosphofructo-2-kinase are essential for glycerol accumulation and yeast cell proliferation under hyperosmotic stress. J Biol Chem 279:23961–23968

    Article  CAS  PubMed  Google Scholar 

  • Ferreira C, Lucas C (2007) Glucose repression over Saccharomyces cerevisiae glycerol/H+ symporter gene STL1 is overcome by high temperature. FEBS Lett 581:1923–1927

    Article  CAS  PubMed  Google Scholar 

  • Ferreira C et al (2005) A member of the sugar transporter family, Stl1p is the glycerol/H+ symporter in Saccharomyces cerevisiae. Mol Biol Cell 16:2068–2076

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Furukawa K, Hoshi Y, Maeda T, Nakajima T, Abe K (2005) Aspergillus nidulans HOG pathway is activated only by two-component signalling pathway in response to osmotic stress. Mol Microbiol 56:1246–1261

    Article  CAS  PubMed  Google Scholar 

  • Furukawa K, Sidoux-Walter F, Hohmann S (2009) Expression of the yeast aquaporin Aqy2 affects cell surface properties under the control of osmoregulatory and morphogenic signalling pathways. Mol Microbiol 74:1272–1286

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Rodriguez LJ, Valle R, Duran A, Roncero C (2005) Cell integrity signaling activation in response to hyperosmotic shock in yeast. FEBS Lett 579:6186–6190

    Article  CAS  PubMed  Google Scholar 

  • Geijer C et al (2012) Yeast aquaglyceroporins use the transmembrane core to restrict glycerol transport. J Biol Chem 287:23562–23570

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hall JP, Cherkasova V, Elion E, Gustin MC, Winter E (1996) The osmoregulatory pathway represses mating pathway activity in Saccharomyces cerevisiae: Isolation of a FUS3 mutant that is insensitive to the repression mechanism. Mol Cell Biol 16:6715–6723

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hedfalk K et al (2004) A regulatory domain in the C-terminal extension of the yeast glycerol channel Fps1p. J Biol Chem 279:14954–14960

    Article  CAS  PubMed  Google Scholar 

  • Hohmann S (2002) Osmotic stress signaling and osmoadaptation in yeasts. Microbiol Mol Biol Rev 66:300–372

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hohmann S (2009) Control of high osmolarity signalling in the yeast Saccharomyces cerevisiae. FEBS Lett 583:4025–4029

    Article  CAS  PubMed  Google Scholar 

  • Karlgren S, Filipsson C, Mullins JGL, Bill RM, Tamas MJ, Hohmann S (2004) Identification of residues controlling transport through the yeast aquaglyceroporin Fps1 using a genetic screen. Eur J Biochem 271:771–779

    Article  CAS  PubMed  Google Scholar 

  • Klipp E, Nordlander B, Kruger R, Gennemark P, Hohmann S (2005) Integrative model of the response of yeast to osmotic shock. Nat Biotechnol 23:975–982

    Article  CAS  PubMed  Google Scholar 

  • Krantz M, Nordlander B, Valadi H, Johansson M, Gustafsson L, Hohmann S (2004) Anaerobicity prepares Saccharomyces cerevisiae cells for faster adaptation to osmotic shock. Eukaryot Cell 3:1381–1390

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lee YJ, Jeschke GR, Roelants FM, Thorner J, Turk BE (2012) Reciprocal phosphorylation of yeast glycerol-3-phosphate dehydrogenases in adaptation to distinct types of stress. Mol Cell Biol 32:4705–4717

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lee J et al (2013) MAPK Hog1 closes the S. cerevisiae glycerol channel Fps1 by phosphorylating and displacing its positive regulators. Genes Dev 27:2590–2601

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Levin DE (2011) Regulation of cell wall biogenesis in Saccharomyces cerevisiae: the cell wall integrity signaling pathway. Genetics 189:1145–1175

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Luyten K, Albertyn J, Skibbe WF, Prior BA, Ramos J, Thevelein JM, Hohmann S (1995) Fps1, a yeast member of the MIP family of channel proteins, is a facilitator for glycerol uptake and efflux and is inactive under osmotic stress. EMBO J 14:1360–1371

    CAS  PubMed Central  PubMed  Google Scholar 

  • Macia J, Regot S, Peeters T, Conde N, Sole R, Posas F (2009) Dynamic signaling in the Hog1 MAPK pathway relies on high basal signal transduction. Sci Signal 2:ra13

    Article  PubMed  Google Scholar 

  • Meena N, Kaur H, Mondal AK (2010) Interactions among HAMP domain repeats act as an osmosensing molecular switch in group III hybrid histidine kinases from fungi. J Biol Chem 285:12121–12132

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Miermont A, Waharte F, Hu S, McClean MN, Bottani S, Leon S, Hersen P (2013) Severe osmotic compression triggers a slowdown of intracellular signaling, which can be explained by molecular crowding. Proc Natl Acad Sci USA 110:5725–5730

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mika JT, Poolman B (2011) Macromolecule diffusion and confinement in prokaryotic cells. Curr Opin Biotechnol 22:117–126

    Article  CAS  PubMed  Google Scholar 

  • Mollapour M, Piper PW (2007) Hog1 mitogen-activated protein kinase phosphorylation targets the yeast Fps1 aquaglyceroporin for endocytosis, thereby rendering cells resistant to acetic acid. Mol Cell Biol 27:6446–6456

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Muller S, Zimmermann FK, Boles E (1997) Mutant studies of phosphofructo-2-kinases do not reveal an essential role of fructose-2,6-bisphosphate in the regulation of carbon fluxes in yeast cells. Microbiology 143:3055–3061

    Article  CAS  PubMed  Google Scholar 

  • Nadal-Ribelles M, Sole C, Xu Z, Steinmetz LM, de Nadal E, Posas F (2014) Control of Cdc28 CDK1 by a stress-induced lncRNA. Mol Cell 53:549–561

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nevoigt E, Stahl U (1997) Osmoregulation and glycerol metabolism in the yeast Saccharomyces cerevisiae. FEMS Microbiol Rev 21:231–241

    Article  CAS  PubMed  Google Scholar 

  • Norbeck J, Påhlman AK, Akhtar N, Blomberg A, Adler L (1996) Purification and characterization of two isoenzymes of dl-glycerol-3-phosphatase from Saccharomyces cerevisiae. Identification of the corresponding GPP1 and GPP2 genes and evidence for osmotic regulation of Gpp2p expression by the osmosensing mitogen-activated protein kinase signal transduction pathway. J Biol Chem 271:13875–13881

    Article  CAS  PubMed  Google Scholar 

  • Oliveira R, Lages F, Silva-Graca M, Lucas C (2003) Fps1p channel is the mediator of the major part of glycerol passive diffusion in Saccharomyces cerevisiae: artefacts and re-definitions. Biochim Biophys Acta 1613:57–71

    Article  CAS  PubMed  Google Scholar 

  • Oliveira AP, Ludwig C, Picotti P, Kogadeeva M, Aebersold R, Sauer U (2012) Regulation of yeast central metabolism by enzyme phosphorylation. Mol Syst Biol 8:623

    Article  PubMed Central  PubMed  Google Scholar 

  • O’Rourke SM, Herskowitz I (1998) The Hog1 MAPK prevents cross talk between the HOG and pheromone response MAPK pathways in Saccharomyces cerevisiae. Genes Dev 12:2874–2886

    Article  PubMed Central  PubMed  Google Scholar 

  • O’Rourke SM, Herskowitz I (2004) Unique and redundant roles for HOG MAPK pathway components as revealed by whole-genome expression analysis. Mol Biol Cell 15:532–542

    Article  PubMed Central  PubMed  Google Scholar 

  • O’Rourke SM, Herskowitz I, O’Shea EK (2002) Yeast go the whole HOG for the hyperosmotic response. Trends Genet 18:405–412

    Article  PubMed  Google Scholar 

  • Petelenz-Kurdziel E et al (2013) Quantitative analysis of glycerol accumulation, glycolysis and growth under hyper osmotic stress. PLoS Comput Biol 9:e1003084

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pettersson N, Filipsson C, Becit E, Brive L, Hohmann S (2005) Aquaporins in yeasts and filamentous fungi. Biol Cell 97:487–500

    Article  CAS  PubMed  Google Scholar 

  • Philips J, Herskowitz I (1997) Osmotic balance regulates cell fusion during mating in Saccharomyces cerevisiae. J Cell Biol 138:961–974

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Poolman B, Blount P, Folgering JHA, Friesen RHE, Moe PC, van der Heide T (2002) How do membrane proteins sense water stress? Mol Microbiol 44:889–902

    Article  CAS  PubMed  Google Scholar 

  • Rajavel M, Philip B, Buehrer BM, Errede B, Levin DE (1999) Mid2 is a putative sensor for cell integrity signaling in Saccharomyces cerevisiae. Mol Cell Biol 19:3969–3976

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rep M, Reiser V, Gartner U, Thevelein JM, Hohmann S, Ammerer G, Ruis H (1999) Osmotic stress-induced gene expression in Saccharomyces cerevisiae requires Msn1p and the novel nuclear factor Hot1p. Mol Cell Biol 19:5474–5485

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rep M, Krantz M, Thevelein JM, Hohmann S (2000) The transcriptional response of Saccharomyces cerevisiae to osmotic shock—Hot1p and Msn2p/Msn4p are required for the induction of subsets of high osmolarity glycerol pathway-dependent genes. J Biol Chem 275:8290–8300

    Article  CAS  PubMed  Google Scholar 

  • Saito H, Posas F (2012) Response to hyperosmotic stress. Genetics 192:289–318

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sato N, Kawahara H, Toh-e A, Maeda T (2003) Phosphorelay-regulated degradation of the yeast Ssk1p response regulator by the ubiquitin-proteasome system. Mol Cell Biol 23:6662–6671

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Scanes KT, Hohmann S, Prior BA (1998) Glycerol production by the yeast Saccharomyces cerevisiae and its relevance to wine: a review. South Afr J Enol Viticul 9:17–24

    Google Scholar 

  • Sheikh-Hamad D, Gustin MC (2004) MAP kinases and the adaptive response to hypertonicity: functional preservation from yeast to mammals. Am J Physiol Renal Physiol 287:F1102–F1110

    Article  CAS  PubMed  Google Scholar 

  • Sole C, Nadal-Ribelles M, de Nadal E, Posas F (2014) A novel role for lncRNAs in cell cycle control during stress adaptation. Curr Genet. doi:10.1007/s00294-014-0453-y

    PubMed  Google Scholar 

  • Thevelein JM, Hohmann S (1995) Trehalose synthase, guard to the gate of glycolysis in yeast? Trends Biochem Sci 20:3–10

    Article  CAS  PubMed  Google Scholar 

  • Thorsen M et al (2006) The MAPK Hog1p modulates Fps1p-dependent arsenite uptake and tolerance in yeast. Mol Biol Cell 17:4400–4410

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • van Heerden JH et al (2014) Lost in transition: start-up of glycolysis yields subpopulations of nongrowing cells. Science 343:1245114

    Article  PubMed  Google Scholar 

  • Van Wuytswinkel O, Reiser V, Siderius M, Kelders MC, Ammerer G, Ruis H, Mager WH (2000) Response of Saccharomyces cerevisiae to severe osmotic stress: evidence for a novel activation mechanism of the HOG MAP kinase pathway. Mol Microbiol 37:382–397

    Article  PubMed  Google Scholar 

  • Westfall PJ, Patterson JC, Chen RE, Thorner J (2008) Stress resistance and signal fidelity independent of nuclear MAPK function. Proc Natl Acad Sci USA 105:12212–12217

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wood JM (2011) Bacterial osmoregulation: a paradigm for the study of cellular homeostasis. Annu Rev Microbiol 65:215–238

    Article  CAS  PubMed  Google Scholar 

  • Yancey PH, Clark ME, Hand SC, Bowlus RD, Somero GN (1982) Living with water stress: evolution of osmolyte systems. Science 217:1214–1222

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

I thank D. E. N. Rangel for arranging the ISFUS meeting (International Symposium on Fungal Stress Responses) and the special issue in Current Genetics. Work in my laboratory has been supported by the Swedish Research Council as well as the European Commission. This review article was supported in part by a grant from São Paulo Research Foundation (FAPESP) of Brazil # 2014/01229-4.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Hohmann.

Additional information

Communicated by D.E.N. Rangel.

This article is part of the Special Issue “Fungal Stress Responses”.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hohmann, S. An integrated view on a eukaryotic osmoregulation system. Curr Genet 61, 373–382 (2015). https://doi.org/10.1007/s00294-015-0475-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00294-015-0475-0

Keywords

Navigation