Skip to main content
Log in

Activation of signaling pathways related to cell wall integrity and multidrug resistance by organic solvent in Saccharomyces cerevisiae

  • Original Article
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

Organic solvents are toxic to living cells. In eukaryotes, cells with organic solvent tolerance have only been found in Saccharomyces cerevisiae. Although several factors contributing to organic solvent tolerance have been identified in previous studies, the mechanism of how yeast cells naturally respond to organic solvent stress is not known. We demonstrated that the pleiotropic drug resistance (PDR) pathway contributed to response to organic solvent stress. Activation of the PDR pathway by mutations in the transcription factors Pdr1p and Pdr3p led to organic solvent tolerance. Exposure to organic solvents also induced transcription levels of PDR5, which encodes a major drug efflux pump. Overproduction of Pdr5p improved organic solvent tolerance, presumably by exporting organic solvents out of the cell. In addition, we showed that the cell wall integrity (CWI) pathway was induced in response to organic solvents to upregulate genes encoding the cell wall-related proteins Wsc3p and Ynl190wp. WSC3 and YNL190W were upregulated independently of the PDR pathway. Among the components of the CWI pathway, the cell surface sensors (Wsc3p and Mid2p) and the transcription factors (Swi4p and Swi6p) appeared to be particularly involved in the response to organic solvents. Our findings indicate that S. cerevisiae activates two different signaling pathways, the PDR pathway and the CWI pathway, to cope with stresses from organic solvents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Balzi E, Wang M, Leterme S, Van Dyck L, Goffeau A (1994) PDR5, a novel yeast multidrug resistance conferring transporter controlled by the transcription regulator PDR1. J Biol Chem 269:2206–2214

    CAS  PubMed  Google Scholar 

  • Carvajal E, van den Hazel HB, Cybularz-Kolaczkowska A, Balzi E, Goffeau A (1997) Molecular and phenotypic characterization of yeast PDR1 mutants that show hyperactive transcription of various ABC multidrug transporter genes. Mol Gen Genet 256:406–415

    Article  CAS  PubMed  Google Scholar 

  • Decottignies A, Lambert L, Catty P, Degand H, Epping EA, Moye-Rowley WS, Balzi E, Goffeau A (1995) Identification and characterization of SNQ2, a new multidrug ATP binding cassette transporter of the yeast plasma membrane. J Biol Chem 270:18150–18157

    Article  CAS  PubMed  Google Scholar 

  • Decottignies A, Grant AM, Nichols JW, de Wet H, McIntosh DB, Goffeau A (1998) ATPase and multidrug transport activities of the overexpressed yeast ABC protein Yor1p. J Biol Chem 273:12612–12622

    Article  CAS  PubMed  Google Scholar 

  • Delahodde A, Delaveau T, Jacq C (1995) Positive autoregulation of the yeast transcription factor Pdr3p, which is involved in control of drug resistance. Mol Cell Biol 15:4043–4051

    CAS  PubMed Central  PubMed  Google Scholar 

  • Delaveau T, Delahodde A, Carvajal E, Subik J, Jacq C (1994) PDR3, a new yeast regulatory gene, is homologous to PDR1 and controls the multidrug resistance phenomenon. Mol Gen Genet 244:501–511

    Article  CAS  PubMed  Google Scholar 

  • DeRisi J, van den Hazel B, Marc P, Balzi E, Brown P, Jacq C, Goffeau A (2000) Genome microarray analysis of transcriptional activation in multidrug resistance yeast mutants. FEBS Lett 470:156–160

    Article  CAS  PubMed  Google Scholar 

  • Devaux F, Carvajal E, Moye-Rowley S, Jacq C (2002) Genome-wide studies on the nuclear PDR3-controlled response to mitochondrial dysfunction in yeast. FEBS Lett 515:25–28

    Article  CAS  PubMed  Google Scholar 

  • Fukumaki T, Inoue A, Moriya K, Horikoshi K (1994) Isolation of a marine yeast that degrades hydrocarbon in the presence of organic solvent. Biosci Biotech Biochem 58:1784–1788

    Article  CAS  Google Scholar 

  • Gao C, Wang L, Milgrom E, Shen WC (2004) On the mechanism of constitutive Pdr1 activator-mediated PDR5 transcription in Saccharomyces cerevisiae: evidence for enhanced recruitment of coactivators and altered nucleosome structures. J Biol Chem 279:42677–42686

    Article  CAS  PubMed  Google Scholar 

  • Gray JV, Ogas JP, Kamada Y, Stone M, Levin DE, Herskowitz I (1997) A role for the Pkc1 MAP kinase pathway of Saccharomyces cerevisiae in bud emergence and identification of a putative upstream regulator. EMBO J 16:4924–4937

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hallstrom TC, Moye-Rowley WS (2000) Multiple signals from dysfunctional mitochondria activate the pleiotropic drug resistance pathway in Saccharomyces cerevisiae. J Biol Chem 275:37347–37356

    Article  CAS  PubMed  Google Scholar 

  • Inoue A, Horikoshi K (1989) A Pseudomonas thrives in high concentrations of toluene. Nature 338:264–266

    Article  CAS  Google Scholar 

  • Jendretzki A, Wittland J, Wilk S, Straede A, Heinisch JJ (2011) How do I begin? Sensing extracellular stress to maintain yeast cell wall integrity. Eur J Cell Biol 90:740–744

    Article  CAS  PubMed  Google Scholar 

  • Jungwirth H, Kuchler K (2006) Yeast ABC transporters—a tale of sex, stress, drugs and aging. FEBS Lett 580:1131–1138

    Article  CAS  PubMed  Google Scholar 

  • Kanda T, Miyata N, Fukui T, Kawamoto T, Tanaka A (1998) Doubly entrapped baker’s yeast survives during the long-term stereoselective reduction of ethyl 3-oxobutanoate in an organic solvent. Appl Microbiol Biotechnol 49:377–381

    Article  CAS  PubMed  Google Scholar 

  • Katzmann DJ, Burnett PE, Golin J, Mahe Y, Moye-Rowley WS (1994) Transcriptional control of the yeast PDR5 gene by the PDR3 gene product. Mol Cell Biol 14:4653–4661

    CAS  PubMed Central  PubMed  Google Scholar 

  • Katzmann DJ, Hallstrom TC, Mahe Y, Moye-Rowley WS (1996) Multiple Pdr1p/Pdr3p binding sites are essential for normal expression of the ATP binding cassette transporter protein-encoding gene PDR5. J Biol Chem 271:23049–23054

    Article  CAS  PubMed  Google Scholar 

  • Kawamoto T, Kanda T, Tanaka A (2001) Preparation of an organic solvent-tolerant strain from baker’s yeast. Appl Microbiol Biotechnol 55:476–479

    Article  CAS  PubMed  Google Scholar 

  • Kolaczkowski M, Kolaczowska A, Luczynski J, Witek S, Goffeau A (1998) In vivo characterization of the drug resistance profile of the major ABC transporters and other components of the yeast pleiotropic drug resistance network. Microb Drug Resist 4:143–158

    Article  CAS  PubMed  Google Scholar 

  • Kuroda K, Matsui K, Higuchi S, Kotaka A, Sahara H, Hata Y, Ueda M (2009) Enhancement of display efficiency in yeast display system by vector engineering and gene disruption. Appl Microbiol Biotechnol 82:713–719

    Article  CAS  PubMed  Google Scholar 

  • Levin DE (2011) Regulation of cell wall biogenesis in Saccharomyces cerevisiae: the cell wall integrity signaling pathway. Genetics 189:1145–1175

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • MacPherson S, Larochelle M, Turcotte B (2006) A fungal family of transcriptional regulators: the zinc cluster proteins. Microbiol Mol Biol Rev 70:583–604

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mamnun YM, Pandjaitan R, Mahe Y, Delahodde A, Kuchler K (2002) The yeast zinc finger regulators Pdr1p and Pdr3p control pleiotropic drug resistance (PDR) as homo- and heterodimers in vivo. Mol Microbiol 46:1429–1440

    Article  CAS  PubMed  Google Scholar 

  • Matsui K, Hirayama T, Kuroda K, Shirahige K, Ashikari T, Ueda M (2006) Screening for candidate genes involved in tolerance to organic solvents in yeast. Appl Microbiol Biotechnol 71:75–79

    Article  CAS  PubMed  Google Scholar 

  • Matsui K, Teranishi S, Kamon S, Kuroda K, Ueda M (2008) Discovery of a modified transcription factor endowing yeasts with organic-solvent tolerance and reconstruction of an organic-solvent-tolerant Saccharomyces cerevisiae strain. Appl Environ Microbiol 74:4222–4225

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Meyers S, Schauer W, Balzi E, Wagner M, Goffeau A, Golin J (1992) Interaction of the yeast pleiotropic drug resistance genes PDR1 and PDR5. Curr Genet 21:431–436

    Article  CAS  PubMed  Google Scholar 

  • Miura N, Kirino A, Endo S, Morisaka H, Kuroda K, Takagi M, Ueda M (2012) Tracing putative trafficking of the glycolytic enzyme enolase via SNARE-driven unconventional secretion. Eukaryot Cell 11:1075–1082

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Monk BC, Goffeau A (2008) Outwitting multidrug resistance to antifungals. Science 321:367–369

    Article  CAS  PubMed  Google Scholar 

  • Moye-Rowley WS (2003) Transcriptional control of multidrug resistance in the yeast Saccharomyces. Prog Nucleic Acid Res Mol Biol 73:251–279

    Article  CAS  PubMed  Google Scholar 

  • Nishida N, Ozato N, Matsui K, Kuroda K, Ueda M (2013) ABC transporters and cell wall proteins involved in organic solvent tolerance in Saccharomyces cerevisiae. J Biotechnol 165:145–152

    Article  CAS  PubMed  Google Scholar 

  • Nourani A, Papajova D, Delahodde A, Jacq C, Subik J (1997) Clustered amino acid substitutions in the yeast transcription regulator Pdr3p increase pleiotropic drug resistance and identify a new central regulatory domain. Mol Gen Genet 256:397–405

    Article  CAS  PubMed  Google Scholar 

  • Rajavel M, Philip B, Buehrer BM, Errede B, Levin DE (1999) Mid2 is a putative sensor for cell integrity signaling in Saccharomyces cerevisiae. Mol Cell Biol 19:3969–3976

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sardessai YN, Bhosle S (2004) Industrial potential of organic solvent tolerant bacteria. Biotechnol Prog 20:655–660

    Article  CAS  PubMed  Google Scholar 

  • Sauna ZE, Bohn SS, Rutledge R, Dougherty MP, Cronin S, May L, Xia D, Ambudkar SV, Golin J (2008) Mutations define cross-talk between the N-terminal nucleotide-binding domain and transmembrane helix-2 of the yeast multidrug transporter Pdr5: possible conservation of a signaling interface for coupling ATP hydrolysis to drug transport. J Biol Chem 283:35010–35022

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Segura A, Molina L, Fillet S, Krell T, Bernal P, Munoz-Rojas J, Ramos JL (2012) Solvent tolerance in Gram-negative bacteria. Curr Opin Biotechnol 23:415–421

    Article  CAS  PubMed  Google Scholar 

  • Servos J, Haase E, Brendel M (1993) Gene SNQ2 of Saccharomyces cerevisiae, which confers resistance to 4-nitroquinoline-N-oxide and other chemicals, encodes a 169 kDa protein homologous to ATP-dependent permeases. Mol Gen Genet 236:214–218

    Article  CAS  PubMed  Google Scholar 

  • Shahi P, Gulshan K, Moye-Rowley WS (2007) Negative transcriptional regulation of multidrug resistance gene expression by an Hsp70 protein. J Biol Chem 282:26822–26831

    Article  CAS  PubMed  Google Scholar 

  • Sikkema J, de Bont JA, Poolman B (1995) Mechanisms of membrane toxicity of hydrocarbons. Microbiol Rev 59:201–222

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sikorski RS, Hieter P (1989) A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122:19–27

    CAS  PubMed Central  PubMed  Google Scholar 

  • Simonics T, Kozovska Z, Michalkova-Papajova D, Delahodde A, Jacq C, Subik J (2000) Isolation and molecular characterization of the carboxy-terminal pdr3 mutants in Saccharomyces cerevisiae. Curr Genet 38:248–255

    Article  CAS  PubMed  Google Scholar 

  • Straede A, Corran A, Bundy J, Heinisch JJ (2007) The effect of tea tree oil and antifungal agents on a reporter for yeast cell integrity signalling. Yeast 24:321–334

    Article  CAS  PubMed  Google Scholar 

  • Thakur JK, Arthanari H, Yang F, Pan SJ, Fan X, Breger J, Frueh DP, Gulshan K, Li DK, Mylonakis E, Struhl K, Moye-Rowley WS, Cormack BP, Wagner G, Naar AM (2008) A nuclear receptor-like pathway regulating multidrug resistance in fungi. Nature 452:604–609

    Article  CAS  PubMed  Google Scholar 

  • Torres S, Pandey A, Castro GR (2011) Organic solvent adaptation of Gram positive bacteria: applications and biotechnological potentials. Biotechnol Adv 29:442–452

    Article  CAS  PubMed  Google Scholar 

  • Verna J, Lodder A, Lee K, Vagts A, Ballester R (1997) A family of genes required for maintenance of cell wall integrity and for the stress response in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 94:13804–13809

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wilk S, Wittland J, Thywissen A, Schmitz HP, Heinisch JJ (2010) A block of endocytosis of the yeast cell wall integrity sensors Wsc1 and Wsc2 results in reduced fitness in vivo. Mol Genet Genom 284:217–229

    Article  CAS  Google Scholar 

  • Wolfger H, Mahe Y, Parle-McDermott A, Delahodde A, Kuchler K (1997) The yeast ATP binding cassette (ABC) protein genes PDR10 and PDR15 are novel targets for the Pdr1 and Pdr3 transcriptional regulators. FEBS Lett 418:269–274

    Article  CAS  PubMed  Google Scholar 

  • Zu T, Verna J, Ballester R (2001) Mutations in WSC genes for putative stress receptors result in sensitivity to multiple stress conditions and impairment of Rlm1-dependent gene expression in Saccharomyces cerevisiae. Mol Genet Genom 266:142–155

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a Grant-in-Aid for Scientific Research (C) (No. 25450099) and a Grant-in-Aid for JSPS Fellows (No. 243819) from the Japan Society for the Promotion of Science, and the commission for Development of Artificial Genes Synthesis Technology for Creating Innovative Biomaterial from the Ministry of Economy, Trade and Industry (METI), Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mitsuyoshi Ueda.

Additional information

Communicated by Stefan Hohmann.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 401 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nishida, N., Jing, D., Kuroda, K. et al. Activation of signaling pathways related to cell wall integrity and multidrug resistance by organic solvent in Saccharomyces cerevisiae . Curr Genet 60, 149–162 (2014). https://doi.org/10.1007/s00294-013-0419-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00294-013-0419-5

Keywords

Navigation