Skip to main content
Log in

Screening for candidate genes involved in tolerance to organic solvents in yeast

  • Genomics and Proteomics
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Saccharomyces cerevisiae mutant strain, KK-211, isolated from serial culture in medium containing isooctane showed an extremely higher tolerance to the hydrophobic organic-solvents, which are toxic to yeast cells compared to the wild-type parent strain, DY-1. To detect genes that are related to this tolerance, a DNA microarray analysis was performed using mRNAs isolated from strains DY-1 and KK-211. Fourteen genes were identified as being related to the tolerance. The expression of 12 genes including ICT1, YNL190W, and PRY3, was induced while the expression of two genes including PHO84 was repressed in strain KK-211. Two genes, ICT1 and YNL190W showed the same profile in the DNA microarray analysis and a differential display-polymerase chain reaction analysis. But, there is no detectable difference in the expression profile of KK-211 cells cultured with or without isooctane. The results suggest that change in expression levels of multiple genes that confer the modification function of the cell surface, not by a single gene, might be required for yeast cell tolerance to organic solvents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Affymetrix (2000) Affymetrix GeneChip expression analysis technical manual http://www.affymetrix.com/support/technical/manual/expression_manual.affx

  • Aono R, Ito M, Horikoshi K (1992) Isolation of novel toluene-tolerant strain of Pseudomonas aeruginosa. Biosci Biotechnol Biochem 56:145–146

    Article  CAS  Google Scholar 

  • Aono R, Kobayashi H (1997) Cell surface properties of organic solvent-tolerant mutants of Escherichia coli K-12. Appl Environ Microbiol 63:3637–3642

    Article  CAS  Google Scholar 

  • Aono R, Tsukagoshi N, Yamamoto M (1998) Involvement of outer membrane protein TolC, a possible member of the mar-sox regulon, in maintenance and improvement of organic solvent tolerance of Escherichia coli K-12. J Bacteriol 180:938–944

    Article  CAS  Google Scholar 

  • Bun-ya M, Nishimura M, Harashima S, Oshima Y (1991) The PHO84 gene of Saccharomyces cerevisiae encodes an inorganic phosphate transporter. Mol Cell Biol 11:3229–3238

    Article  CAS  Google Scholar 

  • Chomczynski P, Sacchi N (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 162:156–159

    Article  CAS  Google Scholar 

  • Cui Z, Hirata D, Tsuchiya E, Osada H, Miyakawa T (1996) The multidrug resistance-associated protein (MRP) subfamily (Yrs1/Yor1) of Saccharomyces cerevisiae is important for the tolerance to a broad range of organic anions. J Biol Chem 271:14712–14716

    Article  CAS  Google Scholar 

  • Entian KD, Schuster T, Hegemann JH, Becher D, Feldmann H, Güldener U, Götz R, Hansen M, Hollenberg CP, Jansen G, Kramer W, Klein S, Kötter P, Kricke J, Launhardt H, Mannhaupt G, Maierl A, Meyer P, Mewes W, Munder T, Niedenthal RK, Ramezani Rad M, Röhmer A, Römer A, Rose M, Schäfer B, Siegler ML, Vetter J, Wilhelm N, Wolf K, Zimmermann FK, Zollner A, Hinnen A (1999) Functional analysis of 150 deletion mutants in Saccharomyces cerevisiae by a systematic approach. Mol Gen Genet 262:683–702

    Article  CAS  Google Scholar 

  • Garay-Arroyo A, Covarrubias AA (1999) Three genes whose expression is induced by stress in Saccharomyces cerevisiae. Yeast 15:879–892

    Article  CAS  Google Scholar 

  • Hamada K, Terashima H, Arisawa M, Yabuki N, Kitada K (1999) Amino acid residues in the ω-minus region participate in cellular localization of yeast glycosylphosphatidylinositol-attached proteins. J Bacteriol 13:3886–3889

    Article  Google Scholar 

  • Hirokawa T, Boon-Chieng S, Mitaku S (1998) SOSUI: classification and secondary structure prediction system for membrane proteins. Bioinformatics 14:378–379

    Article  CAS  Google Scholar 

  • Inoue A, Horikoshi K (1989) A Pseudomonas thrives in high concentration of toluene. Nature (London) 338:264–265

    Article  CAS  Google Scholar 

  • Isken S, de Bont JA (1998) Bacteria tolerant to organic solvent. Extremophiles 2:229–238

    Article  CAS  Google Scholar 

  • Kanda T, Miyata N, Fukui T, Kawamoto T, Tanaka A (1998) Doubly entrapped baker’s yeast survives during the long-term stereoselective reduction of ethyl 3-oxobutanoate in an organic solvent. Appl Microbiol Biotechnol 49:377–381

    Article  CAS  Google Scholar 

  • Kieboom J, de Bont J (2001) Identification and molecular characterization of an efflux system involved in Pseudomonas putida S12 multidrug resistance. Microbiology 147:43–51

    Article  CAS  Google Scholar 

  • Kim IS, Shim JH, Suh YT (2002) Changes in membrane fluidity and fatty acid composition of Pseudomonas putida CN-T19 in response to toluene. Biosci Biotechnol Biochem 66:1945–1950

    Article  CAS  Google Scholar 

  • Kowalski LR, Kondo K, Inouye M (1995) Cold-shock induction of a family of TIP1-related proteins associated with the membrane in Saccharomyces cerevisiae. Mol Microbiol 15:341–353

    Article  CAS  Google Scholar 

  • Lagerstedt JO, Voss JC, Wieslander A, Persson BL (2004) Structural modeling of dual-affinity purified Pho84 phosphate transporter. FEBS Lett 578:262–268

    Article  CAS  Google Scholar 

  • Launhardt H, Hinnen A, Munder T (1998) Drug-induced phenotypes provide a tool for the functional analysis of yeast genes. Yeast 14:935–942

    Article  CAS  Google Scholar 

  • Meyrial V, Laizé V, Gobin R, Ripoche P, Hohmann S, Tacnet F (2001) Existence of a tightly regulated water channel in Saccharomyces cerevisiae. Eur J Biochem 268:334–343

    Article  CAS  Google Scholar 

  • Miura S, Zou W, Ueda M, Tanaka A (2000) Screening of genes involved in isooctane tolerance in Saccharomyces cerevisiae by using mRNA differential display. Appl Environ Microbiol 66:4883–4889

    Article  CAS  Google Scholar 

  • Mukhopadhyay K, Kohli A, Prasad R (2002) Drug susceptibilities of yeast cells are affected by membrane lipid composition. Antimicrob Agents Chemother 46:3695–3705

    Article  CAS  Google Scholar 

  • Nakai K, Horton P (1999) PSORT: a program for detecting sorting signals in proteins and predicting their subcellular localization. Trends Biochem Sci 24:34–36

    Article  CAS  Google Scholar 

  • van den Hazel HB, Pichler H, do Valle Matta MA, Leitner E, Goffeau A, Daum G (1999) PDR16 and PDR17, two homologous genes of Saccharomyces cerevisiae, affect lipid biosynthesis and resistance to multiple drugs. J Biol Chem 274:1934–1941

    Article  Google Scholar 

  • Verna J, Lodder A, Lee K, Vagts A, Ballester R (1997) A family of genes required for maintenance of cell wall integrity and for the stress response in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 94:13804–13809

    Article  CAS  Google Scholar 

  • Ververidis P, Davrazou F, Diallinas G, Georgakopoulos D, Kanellis AK, Panopoulos N (2001) A novel putative reductase (Cpd1p) and the multidrug exporter Snq2p are involved in resistance to cercosporin and other singlet oxygen-generating photosensitizers in Saccharomyces cerevisiae. Curr Genet 39:127–136

    Article  CAS  Google Scholar 

  • Wolfger H, Mahé Y, Parle-McDermott A, Delahodde A, Kuchler K (1997) The yeast ATP binding cassette (ABC) protein genes PDR10 and PDR15 are novel targets for the Pdr1 and Pdr3 transcriptional regulators. FEBS Lett 418:269–274

    Article  CAS  Google Scholar 

  • Yin QY, de Groot PW, Dekker HL, de Jong L, Klis FM, de Koster CG (2005) Comprehensive proteomic analysis of Saccharomyces cerevisiae cell walls. J Biol Chem 280:20894–20901

    Article  CAS  Google Scholar 

  • Zhang W, Needham DL, Coffin M, Rooker A, Hurban P, Tanzer MM, Shuster JR (2003) Microarray analyses of the metabolic responses of Saccharomyces cerevisiae to organic solvent dimethyl sulfoxide. J Ind Microbiol Biotech 30:57–69

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mitsuyoshi Ueda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matsui, K., Hirayama, T., Kuroda, K. et al. Screening for candidate genes involved in tolerance to organic solvents in yeast. Appl Microbiol Biotechnol 71, 75–79 (2006). https://doi.org/10.1007/s00253-006-0328-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-006-0328-3

Keywords

Navigation