Skip to main content

Advertisement

Log in

The Candida albicans Kar2 protein is essential and functions during the translocation of proteins into the endoplasmic reticulum

  • Research Article
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

Since the secretory pathway is essential for Candida albicans to transition from a commensal organism to a pathogen, an understanding of how this pathway functions may be beneficial for identifying novel drug targets to prevent candidiasis. We have cloned the C. albicans KAR2 gene, which performs many roles during the translocation of proteins into the endoplasmic reticulum (ER) during the first committed step of the secretory pathway in many eukaryotes. Our results show that C. albicans KAR2 is essential, and that the encoded protein rescues a temperature-sensitive growth defect found in a Saccharomyces cerevisiae strain harboring a mutant form of the Kar2 protein. Additionally, S. cerevisiae containing CaKAR2 as the sole copy of this essential gene are viable, and ER microsomes prepared from this strain exhibit wild-type levels of post-translational translocation during in vitro translocation assays. Finally, ER microsomes isolated from a C. albicans strain expressing reduced amounts of KAR2 mRNA are defective for in vitro translocation of a secreted substrate protein, establishing a new method to study ER translocation in this organism. Together, these results suggest that C. albicans Kar2p functions during the translocation of proteins into the ER during the first step of the secretory pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alder NN, Shen Y, Brodsky JL, Hendershot LM, Johnson AE (2005) The molecular mechanism underlying BiP-mediated gating of the Sec61 translocon of the endoplasmic reticulum. J Cell Biol 168:389–399

    Article  CAS  PubMed  Google Scholar 

  • Bates S, MacCallum DM, Bertram G, Munro CA, Hughes HB, Buurman ET, Brown AJ, Odds FC, Gow NA (2005) Candida albicans Pmr1p, a secretory pathway P-type Ca2+/Mn2+-ATPase, is required for glycosylation and virulence. J Biol Chem 280:23408–23415

    Article  CAS  PubMed  Google Scholar 

  • Bernardo SM, Khalique Z, Kot J, Jones JK, Lee SA (2008) Candida albicans VPS1 contributes to protease secretion, filamentation and biofilm formation. Fungal Genet Biol 45:861–877

    Article  CAS  PubMed  Google Scholar 

  • Brodsky JL, Schekman R (1993) A Sec63p-BiP complex from yeast is required for protein translocation in a reconstituted proteoliposome. J Cell Biol 123:1355–1363

    Article  CAS  PubMed  Google Scholar 

  • Brodsky JL, Hamamoto S, Feldheim D, Schekman R (1993) Reconstitution of protein translocation from solubilized yeast membranes reveals topologically distinct roles for BiP and cytosolic Hsc70. J Cell Biol 120:95–102

    Article  CAS  PubMed  Google Scholar 

  • Brodsky JL, Goeckeler J, Schekman R (1995) BiP and Sec63p are required for both co- and posttranslational protein translocation into the yeast endoplasmic reticulum. Proc Natl Acad Sci 92:9643–9646

    Article  CAS  PubMed  Google Scholar 

  • Care RS, Trevethick J, Binley KM, Sudbery PE (1999) The MET3 promoter: a new tool for Candida albicans molecular genetics. Mol Microbiol 34:792–798

    Article  CAS  PubMed  Google Scholar 

  • Chaffin WL (2008) Candida albicans cell wall proteins. Microbiol Mol Biol Rev 72:495–544

    Article  CAS  PubMed  Google Scholar 

  • Chaffin WL, López-Ribot JL, Casanova M, Gozalbo D, Martínez JP (1998) Cell wall and secreted proteins of Candida albicans: identification, function and expression. Microbiol Mol Biol Rev 62:130–180

    CAS  PubMed  Google Scholar 

  • Clément M, Fournier H, De Repentigny L, Belhumeur P (1998) Isolation and characterization of the Candida albicans SEC4 gene. Yeast 14:675–680

    Article  PubMed  Google Scholar 

  • Davis DA, Bruno VM, Loza L, Filler SG, Mitchell AP (2002) Candida albicans Mds3p, a conserved regulator of pH responses and virulence identified through insertional mutagenesis. Genetics 162:1573–1581

    CAS  PubMed  Google Scholar 

  • De la Rosa JM, González JM, Gutiérrez F, Ruíz T, Rodríguez L (2004a) Characterization of Candida albicans orthologue of the Saccharomyces cerevisiae signal-peptidase-subunit encoding gene SPC3. Yeast 21:883–894

    Article  Google Scholar 

  • De la Rosa JM, Ruíz T, Fonzi WA, Rodríguez L (2004b) Analysis of heterologous expression of Candida albicans SEC61 gene reveals differences in Sec61p homologues related to species-specific functionality. Fungal Genet Biol 41:941–953

    Article  PubMed  Google Scholar 

  • Enloe B, Diamond A, Mitchell AP (2000) A single-transformation gene function test in diploid Candida albicans. J Bacteriol 182:5730–5736

    Article  CAS  PubMed  Google Scholar 

  • Filler SG, Kullberg BJ (2002) Deep-seated candidal infections. In: Calderone RA (ed) Candida and candidiasis. ASM Press, Washington, DC, pp 341–348

    Google Scholar 

  • Fonzi WA (2009) The protein secretory pathway of Candida albicans. Mycoses 52:291–303

    Article  CAS  Google Scholar 

  • Gagnon-Arsenault I, Tremblay J, Bourbonnais Y (2006) Fungal yapsins and cell wall: a unique family of aspartic peptidases for a distinctive cellular function. FEMS Yeast Res 6:966–978

    Article  CAS  PubMed  Google Scholar 

  • Gething MJ (1999) Role and regulation of the ER chaperone BiP. Semin Cell Dev Biol 10:465–472

    Article  CAS  PubMed  Google Scholar 

  • Gietz RD, Woods RA (2002) Transformation of yeast by lithium acetate/single-stranded carrier DNA/polyethylene glycol method. Methods Enzymol 350:87–96

    Article  CAS  PubMed  Google Scholar 

  • Gillum AM, Tsay EY, Kirsch DR (1984) Isolation of the Candida albicans gene for orotidine-5′-phosphate decarboxylase by complementation of S. cerevisiae ura3 and E. coli pyrF mutations. Mol Gen Genet 198:179–182

    Article  CAS  PubMed  Google Scholar 

  • Haigh NG, Johnson AE (2002) A new role for BiP: closing the aqueous translocon pore during protein integration into the ER membrane. J Cell Biol 156:261–270

    Article  CAS  PubMed  Google Scholar 

  • Hamman BD, Hendershot LM, Johnson AE (1998) BiP maintains the permeability barrier of the ER membrane by sealing the lumenal end of the translocon pore before and early in translocation. Cell 92:747–758

    Article  CAS  PubMed  Google Scholar 

  • Hube B (1996) Candida albicans secreted aspartyl proteinases. Curr Top Med Mycol 7:55–69

    CAS  PubMed  Google Scholar 

  • Kabani M, Kelley SS, Morrow MW, Montgomery DL, Sivendran R, Rose MD, Gierasch LM, Brodsky JL (2003) Dependence of endoplasmic reticulum-associated degradation on the peptide binding domain and concentration of BiP. Mol Biol Cell 14:3437–3448

    Article  CAS  PubMed  Google Scholar 

  • Kullberg BJ, Filler SG (2002) Candidemia. In: Calderone RA (ed) Candida and candidiasis. ASM Press, Washington, DC, pp 327–340

    Google Scholar 

  • Latterich M, Schekman R (1994) The karyogamy gene KAR2 and novel proteins are required for ER-membrane fusion. Cell 78:87–98

    Article  CAS  PubMed  Google Scholar 

  • Lee RJ, Liu C, Harty C, McCracken AA, Latterich M, Römisch K, DeMartino GN, Thomas PJ, Brodsky JL (2004) Uncoupling retro-translocation and degradation in the ER-associated degradation of a soluble protein. EMBO J 23:2206–2215

    Article  CAS  PubMed  Google Scholar 

  • Lee RJ, McCracken AA, Brodsky JL (2005) Reconstitution of endoplasmic reticulum-associated degradation using yeast membranes and cytosol. Methods Mol Biol 301:175–184

    CAS  PubMed  Google Scholar 

  • Lee SA, Jones J, Hardison S, Kot J, Khalique Z, Bernardo SM, Lazzell A, Monteagudo C, Lopez-Ribot J (2009) Candida albicans VPS4 is required for secretion of aspartyl proteases and in vivo virulence. Mycopathologia 167:55–63

    Article  CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2 −ΔΔCT method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Lyman SK, Schekman R (1995) Interaction between BiP and Sec63p is required for the completion of protein translocation into the ER of Saccharomyces cerevisiae. J Cell Biol 131:1163–1171

    Article  CAS  PubMed  Google Scholar 

  • Makio T, Nishikawa S, Nakayama T, Nagai H, Endo T (2008) Identification and characterization of a Jem1p ortholog of Candida albicans: dissection of Jem1p functions in karyogamy and protein quality control in Saccharomyces cerevisiae. Genes Cells 13:1015–1026

    Article  CAS  PubMed  Google Scholar 

  • Mao Y, Kalb VF, Wong B (1999) Overexpression of a dominant-negative allele of SEC4 inhibits growth and protein secretion in Candida albicans. J Bacteriol 181:7235–7242

    CAS  PubMed  Google Scholar 

  • Matlack KE, Plath K, Misselwitz B, Rapoport TA (1997) Protein transport by purified yeast Sec somplex and Kar2p without membranes. Science 277:938–941

    Article  CAS  PubMed  Google Scholar 

  • Matlack KES, Misselwitz B, Plath K, Rapoport TA (1999) BiP acts as a molecular ratchet during posttranslational transport of prepro-α factor across the ER membrane. Cell 97:553–564

    Article  CAS  PubMed  Google Scholar 

  • McClellan AJ, Endres JB, Vogel JP, Palazzi D, Rose MD, Brodsky JL (1998) Specific molecular chaperone interactions and an ATP-dependent conformational change are required during posttranslational protein translocation into the yeast ER. Mol Biol Cell 9:3533–3545

    CAS  PubMed  Google Scholar 

  • McCracken AA, Brodsky JL (1996) Assembly of ER-associated protein degradation in vitro: dependence on cytosol, calnexin and ATP. J Cell Biol 132:291–298

    Article  CAS  PubMed  Google Scholar 

  • Meda MS, Lopez AJ, Guyot A (2007) Candida inferior vena cava filter infection and septic thrombophlebitis. Br J Radiol 80:e48–e49

    Article  CAS  PubMed  Google Scholar 

  • Monteoliva L, Sánchez M, Pla J, Gil C, Nombela C (1996) Cloning of Candida albcians SEC14 gene homologue coding for a putative essential function. Yeast 12:1097–1105

    Article  CAS  PubMed  Google Scholar 

  • Morrow MW, Brodsky JL (2001) Yeast ribosomes bind to highly purified reconstituted Sec61p complex and to mammalian p180. Traffic 2:705–716

    Article  CAS  PubMed  Google Scholar 

  • Morrow MW, Brodsky JL (2005) Protein import into endoplasmic reticulum: methods. In: The encyclopedia of life sciences. Nature Publishing Group, New York 15:346–348

  • Naglik JR, Challacombe SJ, Hube B (2003) Candida albicans secreted aspartyl proteinases in virulence and pathogenesis. Micro Mol Biol Rev 67:400–428

    Article  CAS  Google Scholar 

  • Ng DT, Walter P (1996) ER membrane protein complex required for nuclear fusion. J Cell Biol 132:499–509

    Article  CAS  PubMed  Google Scholar 

  • Nieto A, Sanz P, Sentandreu R, Agudo LDC (1993) Cloning and characterization of the SEC18 gene from Candida albicans. Yeast 9:875–887

    Article  CAS  PubMed  Google Scholar 

  • Nishikawa S, Fewell SW, Kato Y, Brodsky JL, Endo T (2001) Molecular chaperones in the yeast endoplasmic reticulum maintain the solubility of proteins for retrotranslocation and degradation. J Cell Biol 153:1061–1069

    Article  CAS  PubMed  Google Scholar 

  • Nishikawa S, Brodsky JL, Nakatsukasa K (2005) Roles of molecular chaperones in endoplasmic reticulum (ER) quality control and ER-associated degradation (ERAD). J Biochem 137:551–555

    Article  CAS  PubMed  Google Scholar 

  • Nombela C, Gil C, Chaffin L (2006) Non-conventional protein secretion in yeast. Trends Micro 14:15–21

    Article  CAS  Google Scholar 

  • Normington K, Kohno K, Kozutsumi Y, Gething MJ, Sambrook J (1989) S. cerevisiae encodes an essential protein homologous in sequence and function to mammalian BiP. Cell 57:1223–1236

    Article  CAS  PubMed  Google Scholar 

  • Panzner S, Dreier L, Hartmann E, Kostka S, Rapoport TA (1995) Posttranslational protein transport in yeast reconstituted with a purified complex of Sec proteins and Kar2p. Cell 81:561–570

    Article  CAS  PubMed  Google Scholar 

  • Plath K, Mothes W, Wilkinson BM, Stirling CJ, Rapoport TA (1998) Signal sequence recognition in pottranslational protein transport across the yeast ER membrane. Cell 94:795–807

    Article  CAS  PubMed  Google Scholar 

  • Plemper RK, Böhmler S, Bordallo J, Sommer T, Wolf DH (1997) Mutant analysis links the translocon and BiP to retrograde protein transport for ER degradation. Nature 388:891–895

    Article  CAS  PubMed  Google Scholar 

  • Regnacq M, Hewitt E, Allen J, Rosamond J, Stirling CJ (1998) Deletion analysis of yeast Sec65p reveals a central domain that is sufficient for function in vivo. Mol Microbiol 29:753–762

    Article  CAS  PubMed  Google Scholar 

  • Rico H, Herrero E, Miragall F, Sentandreu R (1991) An electron microscopy study of wall expansion during Candida albicans yeast and mycelial growth using concanavalin A-ferritin labeling of mannoproteins. Arch Microbiol 156:111–114

    Article  CAS  PubMed  Google Scholar 

  • Romani L, Bistoni F, Puccetti P (2003) Adaptation of Candida albicans to the host environment: the role of morphogenesis in virulence and survival in mammalian hosts. Curr Opin Microbiol 6:338–343

    Article  PubMed  Google Scholar 

  • Rose MD, Misra LM, Vogel JP (1989) KAR2, a karyogamy gene, is the yeast homolog of the mammalian BiP/GRP78 gene. Cell 57:1211–1221

    Article  CAS  PubMed  Google Scholar 

  • Rose MD, Winston F, Hieter P (1990) Methods in yeast genetics: a laboratory course manual. Cold Springs Harbor Laboratory Press, Cold Springs Harbor, NY

    Google Scholar 

  • Rothblatt JA, Deshaies RJ, Sanders SL, Daum G, Schekman R (1989) Multiple genes are required for proper insertion of secretory proteins into the endoplasmic reticulum of yeast. J Cell Biol 109:2641–2652

    Article  CAS  PubMed  Google Scholar 

  • Ruhnke M (2002) Skin and mucous membrane infections. In: Calderone RA (ed) Candida and candidiasis. ASM Press, Washington, DC, pp 307–325

    Google Scholar 

  • Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

  • Sanders SL, Whitfield KM, Vogel JP, Rose MD, Schekman RW (1992) Sec61p and BiP directly facilitate polypeptide translocation into the ER. Cell 69:353–365

    Article  CAS  PubMed  Google Scholar 

  • Sandovsky-Losica H, Segal E (2006) Infection of HEp2 epithelial cells with Candida albicans: adherence and postadherence events. FEMS Immunol Med Microbiol 46:470–475

    Article  CAS  PubMed  Google Scholar 

  • Schaller M, Borelli C, Korting HC, Hube B (2005) Hydrolytic enzymes as virulence factors of Candida albicans. Mycoses 48:365–377

    Article  CAS  PubMed  Google Scholar 

  • Simons JF, Ferro-Novick S, Rose MD, Helenius A (1995) BiP/Kar2p serves as a molecular chaperone during carboxypeptidase Y folding in yeast. J Cell Biol 130:41–49

    Article  CAS  PubMed  Google Scholar 

  • Sohn K, Schwenk J, Urban C, Lechner J, Schweikert M, Rupp S (2006) Getting in touch with Candida albicans: the cell wall of a fungal pathogen. Curr Drug Targets 7:505–512

    Article  CAS  PubMed  Google Scholar 

  • Sorger PK, Pelham HRB (1987) Purification and characterization of a heat-shock element binding protein from yeast. EMBO J 6:3035–3041

    CAS  PubMed  Google Scholar 

  • Stirling CJ, Rothblatt J, Hosobuchi M, Deshaies R, Schekman R (1992) Protein translocation mutants defective in the insertion of integral membrane proteins into the endoplasmic reticulum. Mol Biol Cell 3:129–142

    CAS  PubMed  Google Scholar 

  • Sudbery P, Gow N, Berman J (2004) The distinct morphogenic states of Candida albicans. Trends Microbiol 12:317–324

    Article  CAS  PubMed  Google Scholar 

  • Thomas DP, Lopez-Ribot JL, Lee SA (2009) A proteomic analysis of secretory proteins of a pre-vacuolar mutant of Candida albicans. J Proteomics 73:342–351

    Article  CAS  PubMed  Google Scholar 

  • Tronchin G, Bouchara JP, Annaix V, Robert R, Senet JM (1991) Fungal cell adhesion molecules in Candida albicans. Eur J Epidemiol 7:23–33

    Article  CAS  PubMed  Google Scholar 

  • Verstrepen KJ, Klis FM (2006) Flocculation, adhesion and biofilm formation in yeasts. Mol Microbiol 60:5–15

    Article  CAS  PubMed  Google Scholar 

  • Vogel JP, Misra LM, Rose MD (1990) Loss of BiP/GRP78 function blocks translocation of secretory proteins in yeast. J Cell Biol 110:1885–1895

    Article  CAS  PubMed  Google Scholar 

  • Wach A, Brachat A, Pöhlmann R, Philippsen P (1994) New heterologous modules for classical or PCR-based gene disruptions in Saccharomyces cerevisiae. Yeast 10:1793–1808

    Article  CAS  PubMed  Google Scholar 

  • Weber Y, Santore UJ, Ernst JF, Swoboda RK (2001) Divergence of eukaryotic secretory components: the Candida albicans homolog of the Saccharomyces cerevisiae Sec20 protein is N terminally truncated, and its levels determine antifungal drug resistance and growth. J Bacteriol 183:46–54

    Article  CAS  PubMed  Google Scholar 

  • Wilson RB, Davis D, Mitchell AP (1999) Rapid hypothesis testing with Candida albicans through gene disruption with short homology regions. J Bacteriol 181:1868–1874

    CAS  PubMed  Google Scholar 

  • Wimalasena TT, Enjalbert B, Guillemette T, Plumridge A, Budge S, Yin Z, Brown AJP, Archer DB (2008) Impact of the unfolded protein response upon genome-wide expression patterns, and the role of Hac1 in the polarized growth of Candida albicans. Fungal Genet Biol 45:1235–1247

    Article  CAS  PubMed  Google Scholar 

  • Young BP, Craven RA, Reid PJ, Willer M, Stirling C (2001) Sec63p and Kar2p are required for the translocation of SRP-dependent precursors into the yeast endoplasmic reticulum in vivo. EMBO J 20:262–271

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was funded by grant number P20 RR-16455-10 from the National Center for Research Resources (NCRR), a component of the National Institute of Health (NIH). We would like to thank Drs David Butler and Kurt Toenjes (Montana State University-Billings), Dr. Robert Cramer (Montana State University-Bozeman) and Dr. Jeffrey Brodsky (University of Pittsburgh) for providing strains, αScKar2p and αScSec61p antisera, qRT-PCR facility use, technical assistance and critically reviewing this manuscript. In addition, we also thank Drs Karen Arndt and Margaret Shirra (University of Pittsburgh) for assistance with tetrad dissections and Dr. Peter Sudbery (University of Sheffield) for providing plasmid pCaDis. Finally, we would like to thank Drs Qi Zhao and William C. Nierman (TIGR), Frank J. Smith and Aaron P. Mitchell (Carnegie Mellon University), and NIH grant 1R01AI057804 for the UAU1-containing clone, CAGA643.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael W. Morrow.

Additional information

Communicated by A. J. P. Brown.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morrow, M.W., Janke, M.R., Lund, K. et al. The Candida albicans Kar2 protein is essential and functions during the translocation of proteins into the endoplasmic reticulum. Curr Genet 57, 25–37 (2011). https://doi.org/10.1007/s00294-010-0323-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00294-010-0323-1

Keywords

Navigation