Skip to main content
Log in

Ends-in vs. ends-out targeted insertion mutagenesis in Saccharomyces castellii

  • Technical Note
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

Gene replacement (knock-out) is a major tool for the analysis of gene function. However, the efficiency of correct targeting varies between species, and is dependent on the structure of the DNA construct. We analyzed the targeted insertion mutagenesis method in the budding yeast Saccharomyces castellii, phylogenetically positioned after the whole genome duplication event in the Saccharomyces lineage. We compared the targeting efficiency for target DNA constructs in the respective ends-in and ends-out form. For some of the constructs S. castellii showed a similar high degree of homologous recombination as S. cerevisiae. In agreement with S. cerevisiae, a higher targeting efficiency was seen for the diploid strain than for the haploid. Surprisingly, a higher degree of targeting efficiency was seen for ends-out constructs compared to ends-in constructs. This result may have been influenced by the difference in the length of the homologous target sequences used, although long homology regions of 300 bp–1 kb were used in all constructs. Remarkably, very short regions of cohesive heterologous sequences at the ends of the constructs highly stimulated random illegitimate integration, suggesting that the pathway of non-homologous end joining is highly active in S. castellii.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Astrom SU, Okamura SM, Rine J (1999) Yeast cell-type regulation of DNA repair. Nature 397:310

    Article  PubMed  CAS  Google Scholar 

  • Astromskas E, Cohn M (2007) Tools and methods for genetic analysis of Saccharomyces castellii. Yeast 24:499–509

    Article  PubMed  CAS  Google Scholar 

  • Boulton SJ, Jackson SP (1996) Saccharomyces cerevisiae Ku70 potentiates illegitimate DNA double-strand break repair and serves as a barrier to error-prone DNA repair pathways. EMBO J 15:5093–5103

    PubMed  CAS  Google Scholar 

  • Chan CY, Kiechle M, Manivasakam P, Schiestl RH (2007) Ionizing radiation and restriction enzymes induce microhomology-mediated illegitimate recombination in Saccharomyces cerevisiae. Nucleic Acids Res 35:5051–5059

    Article  PubMed  CAS  Google Scholar 

  • Cliften PF, Fulton RS, Wilson RK, Johnston M (2006) After the duplication: gene loss and adaptation in Saccharomyces genomes. Genetics 172:863–872

    Article  PubMed  CAS  Google Scholar 

  • Cohn M (2008) Molecular diversity of telomeric sequences. In: Nosek J, Tomaska L (eds) Origin and evolution of telomeres. Landes Bioscience, Austin, pp 70–82

    Google Scholar 

  • Cohn M, Blackburn EH (1995) Telomerase in yeast. Science 269:396–400

    Article  PubMed  CAS  Google Scholar 

  • Cohn M, McEachern MJ, Blackburn EH (1998) Telomeric sequence diversity within the genus Saccharomyces. Curr Genet 33:83–91

    Article  PubMed  CAS  Google Scholar 

  • Cormack BP, Falkow S (1999) Efficient homologous and illegitimate recombination in the opportunistic yeast pathogen Candida glabrata. Genetics 151:979–987

    PubMed  CAS  Google Scholar 

  • Frank-Vaillant M, Marcand S (2002) Transient stability of DNA ends allows nonhomologous end joining to precede homologous recombination. Mol Cell 10:1189–1199

    Article  PubMed  CAS  Google Scholar 

  • Hastings PJ, McGill C, Shafer B, Strathern JN (1993) Ends-in vs. ends-out recombination in yeast. Genetics 135:973–980

    PubMed  CAS  Google Scholar 

  • Hughes TR, Roberts CJ, Dai H, Jones AR, Meyer MR, Slade D, Burchard J, Dow S, Ward TR, Kidd MJ, Friend SH, Marton MJ (2000) Widespread aneuploidy revealed by DNA microarray expression profiling. Nat Genet 25:333–337

    Article  PubMed  CAS  Google Scholar 

  • Kegel A, Sjostrand JO, Astrom SU (2001) Nej1p, a cell type-specific regulator of nonhomologous end joining in yeast. Curr Biol 11:1611–1617

    Article  PubMed  CAS  Google Scholar 

  • Kegel A, Martinez P, Carter SD, Astrom SU (2006) Genome wide distribution of illegitimate recombination events in Kluyveromyces lactis. Nucleic Acids Res 34:1633–1645

    Article  PubMed  CAS  Google Scholar 

  • Klinner U, Schafer B (2004) Genetic aspects of targeted insertion mutagenesis in yeasts. FEMS Microbiol Rev 28:201–223

    Article  PubMed  CAS  Google Scholar 

  • Krogh BO, Symington LS (2004) Recombination proteins in yeast. Annu Rev Genet 38:233–271

    Article  PubMed  CAS  Google Scholar 

  • Maassen N, Freese S, Schruff B, Passoth V, Klinner U (2008) Nonhomologous end joining and homologous recombination DNA repair pathways in integration mutagenesis in the xylose-fermenting yeast Pichia stipitis. FEMS Yeast Res 8:735–743

    Article  PubMed  CAS  Google Scholar 

  • Manivasakam P, Weber SC, McElver J, Schiestl RH (1995) Micro-homology mediated PCR targeting in Saccharomyces cerevisiae. Nucleic Acids Res 23:2799–2800

    Article  PubMed  CAS  Google Scholar 

  • Marinoni G, Manuel M, Petersen RF, Hvidtfeldt J, Sulo P, Piskur J (1999) Horizontal transfer of genetic material among Saccharomyces yeasts. J Bacteriol 181:6488–6496

    PubMed  CAS  Google Scholar 

  • Morrow DM, Connelly C, Hieter P (1997) “Break copy” duplication: a model for chromosome fragment formation in Saccharomyces cerevisiae. Genetics 147:371–382

    PubMed  CAS  Google Scholar 

  • Naumov GI, Naumova ES, Marinoni G, Piskur J (1998) Genetic analysis of Saccharomyces castellii, S. exiguus and S. martiniae yeasts. Genetika 34:565–568

    PubMed  CAS  Google Scholar 

  • Orr-Weaver TL, Szostak JW (1983) Multiple, tandem plasmid integration in Saccharomyces cerevisiae. Mol Cell Biol 3:747–749

    PubMed  CAS  Google Scholar 

  • Paques F, Haber JE (1999) Multiple pathways of recombination induced by double-strand breaks in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 63:349–404

    PubMed  CAS  Google Scholar 

  • Petersen RF, Langkjaer RB, Hvidtfeldt J, Gartner J, Palmen W, Ussery DW, Piskur J (2002) Inheritance and organisation of the mitochondrial genome differ between two Saccharomyces yeasts. J Mol Biol 318:627–636

    Article  PubMed  CAS  Google Scholar 

  • Rhodin J, Astromskas E, Cohn M (2006) Characterization of the DNA binding features of Saccharomyces castellii Cdc13p. J Mol Biol 355:335–346

    Article  PubMed  CAS  Google Scholar 

  • Rothstein RJ (1983) One-step gene disruption in yeast. Methods Enzymol 101:202–211

    Article  PubMed  CAS  Google Scholar 

  • Singer MS, Gottschling DE (1994) TLC1: template RNA component of Saccharomyces cerevisiae telomerase. Science 266:404–409

    Article  PubMed  CAS  Google Scholar 

  • Svetec IK, Stafa A, Zgaga Z (2007) Genetic side effects accompanying gene targeting in yeast: the influence of short heterologous termini. Yeast 24:637–652

    Article  PubMed  CAS  Google Scholar 

  • Wach A, Brachat A, Pohlmann R, Philippsen P (1994) New heterologous modules for classical or PCR-based gene disruptions in Saccharomyces cerevisiae. Yeast 10:1793–1808

    Article  PubMed  CAS  Google Scholar 

  • Wahlin J, Cohn M (2002) Analysis of the RAP1 protein binding to homogeneous telomeric repeats in Saccharomyces castellii. Yeast 19:241–256

    Article  PubMed  CAS  Google Scholar 

  • Wolfe KH (2006) Comparative genomics and genome evolution in yeasts. Philos Trans R Soc Lond B Biol Sci 361:403–412

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank J. Vezilier, H. Mohr, C. Kilgus, W. Su, M. Gsell, I. Baena Ropero, and M. Appelbäck for technical assistance. We are grateful to R.J. Wellinger for sharing the TLC1 sequence data and to U.H. Mortensen for valuable advice. This work was supported by grants from the Carl Trygger Foundation, the Royal Physiographic Society in Lund and the Jörgen Lindström Foundation. E. Astromskas was supported by a scholarship from the Sven and Lilly Lawsky Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marita Cohn.

Additional information

Communicated by P. Sunnerhagen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Astromskas, E., Cohn, M. Ends-in vs. ends-out targeted insertion mutagenesis in Saccharomyces castellii . Curr Genet 55, 339–347 (2009). https://doi.org/10.1007/s00294-009-0248-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00294-009-0248-8

Keywords

Navigation