Skip to main content
Log in

Gene insertion in Saccharomyces cerevisiae using the CRISPR/Cas9 system

  • Original Article
  • Published:
3 Biotech Aims and scope Submit manuscript

Abstract

The aim of this work was to rapidly and efficiently insert target DNA sequences into predetermined genomic sites in Saccharomyces cerevisiae. In this study, we designed two technical routes for gene insertion in the S. cerevisiae genome based on the CRISPR/Cas9 system, and a CRISPR array was inserted into the Amp site and the crRNA site of the pCRCT plasmid, respectively. The CRISPR array consists of a 100 bp donor sequence, the target gene and guide sequence. A 100 bp donor sequence was designed to have two 50 bp homology arms flanking the Cas9 cutting site and incorporate 8 bp or 1000 bp deletions including the PAM sequence, where the target gene was also inserted. The results showed that using only one pCRCTG plasmid and a 100 bp dsDNA mutagenizing homologous recombination donor, we can successfully insert a 2.9 kb gene fragment at the target site of the S. cerevisiae genome. However, inserting the CRISPR array into the crRNA site has a higher recombination efficiency than inserting into the Amp site. This recombination strategy represents a powerful tool for creating yeast strains with target gene inserts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

CRISPR:

Clustered regularly interspaced short palindromic repeat

PAM:

Protospacer adjacent motif

YPD:

Yeast extract peptone dextrose

OD600:

Optical density at 600 nm

References

  • Auer TO, Del BF (2014) CRISPR/Cas9 and TALEN-mediated knock-in approaches in zebrafish. Methods 69:142–150

    Article  CAS  Google Scholar 

  • Baek K, Kim DH, Jeong J, Sim SJ, Melis A, Kim JS, Jin E, Bae S (2016) DNA-free two-gene knockout in Chlamydomonas reinhardtii via CRISPR-CAS9 ribonucleoproteins. Sci Rep 6:30620

    Article  CAS  Google Scholar 

  • Bao ZH, Xiao H, Liang J, Zhang L, Xiong X, Sun N, Si T, Zhao HM (2015) Homology-integrated CRISPR-Cas (HI-CRISPR) system for one-step multigene disruption in\r Saccharomyces cerevisiae. ACS Synth Biol 4:585–594

    Article  CAS  Google Scholar 

  • Bassett AR, Liu JL (2014) CRISPR/Cas9 and genome editing in Drosophila. J Genet Genom 41:7–19

    Article  CAS  Google Scholar 

  • Gao YP (2017) Generation of NRAMP1 precise knockin cattle via the CRISPR/Cas9 system. Doctoral dissertation

  • Gietz RD, Schiestl RH (2007) Frozen competent yeast cells that can be transformed with high efficiency using the LiAc/SS carrier DNA/PEG method. Nat Protoc 2:1–4

    Article  CAS  Google Scholar 

  • He XJ, Tan CL, Wang F, Wang YF, Zhou R, Cui DX, You WX, Zhao H, Ren JW, Feng B (2016) Knock-in of large reporter genes in human cells via CRISPR/Cas9-induced homology-dependent and independent DNA repair. Nucleic Acids Res 9:9

    Google Scholar 

  • Irion U, Krauss J, Nusslein-Volhard C (2014) Precise and efficient genome editing in zebrafish using the CRISPR/Cas9 system. Development 141:4827–4830

    Article  CAS  Google Scholar 

  • Jakočiūnas T, Rajkumar AS, Zhang J, Arsovska D, Rodriguez A, Jendresen CB, Skjødt ML, Nielsen AT, Borodina I, Jensen MK, Keasling JD (2015) CasEMBLR: Cas9-Facilitated multiloci genomic integration of in vivo assembled DNA parts in Saccharomyces cerevisiae. ACS Synth Biol 4:1226–1234

    Article  Google Scholar 

  • Keskin H, Shen Y, Huang F, Patel M, Yang T, Ashley K, Mazin AV, Storici F (2014) Transcript RNA-templated DNA recombination and repair. Nature 515:436–439

    Article  CAS  Google Scholar 

  • Kimura Y, Oda M, Nakatani T, Sekita Y, Monfort A, Wutz A, Mochizuki H, Nakano T (2015) CRISPR/Cas9-mediated reporter knock-in in mouse haploid embryonic stem cells. Sci Rep 5:10710

    Article  CAS  Google Scholar 

  • Li K, Wang G, Andersen T, Zhou PZ, Pu WT (2014) Optimization of genome engineering approaches with the CRISPR/Cas9 system. PLoS ONE 9:e105779

    Article  Google Scholar 

  • Liu K, Liang LM, Li ZH, Ye HY, Pan YF, He WJ, Chen YQ, Xue T (2018) CRISPR/Cas9 mediated ADH2 gene disruption in Saccharomyces Cerevisiae and antisense RNA interference in GPD1 expression. Mod Food Sci Technol 34:64–71

    CAS  Google Scholar 

  • Mali P, Yang L, Esvelt KM, Aach J, Guell M, DiCarlo JE, Norville JE, Church GM (2013) RNA-guided human genome engineering via Cas9. Science 339:823–826

    Article  CAS  Google Scholar 

  • Paix A, Wang Y, Smith HE, Lee CYS, Calidas D, Lu T, Smith J, Schmidt H, Krause MW, Seydoux G (2014) Scalable and versatile genome editing using linear DNAs with microhomology to Cas9 sites in Caenorhabditis elegans. Genetics 198:1347–1356

    Article  Google Scholar 

  • Paix A, Folkmann A, Rasoloson D, Seydoux G (2015) High efficiency, homology-directed genome editing in Caenorhabditis elegans using CRISPR-Cas9 ribonucleoprotein complexes. Genetics 115:179382

    Google Scholar 

  • Perry KJ, Henry JQ (2015) CRISPR/Cas9-mediated genome modification in the mollusc,Crepidula fornicata. Genesis 53:237–244

    Article  CAS  Google Scholar 

  • Ronda C, Maury J, Jakočiu̅nas T, Jacobsen SAB, Germann SM, Harrison SJ, Borodina I, Keasling JD, Jensen MK, Nielsen AT (2015) CrEdit: CRISPR mediated multi-loci gene integration in Saccharomyces cerevisiae. Microbial Cell Factor 14:97

  • Ruan J, Li H, Xu K, Wu TW, Wei JL, Zhou R, Liu ZG, Mu YL, Yang SL, Ouyang HS, Chen-Tsai RY, Li K (2015) Highly efficient CRISPR/Cas9-mediated transgene knockin at the H11 locus in pigs. Sci Rep 5:14253

    Article  Google Scholar 

  • Sambrook J, Russell DW (2002) Molecular cloning: a laboratory manual, Beijing Science Press, pp 26–29

  • Sasaki H, Yoshida K, Hozumi A, Sasakura Y (2014) CRISPR/Cas9-mediated gene knockout in the ascidian Ciona intestinalis. Dev Growth Differ 56:499–510

    Article  CAS  Google Scholar 

  • Schumann K, Lin S, Boyer E, Simeonov DR, Subramaniam M, Gate RE, Haliburton GE, Ye CJ, Bluestone JA, Doudna JA, Marson A (2015) Generation of knock-in primary human T cells using Cas9 ribonucleoproteins. Proc Natl Acad Sci 112:10437–10442

    Article  CAS  Google Scholar 

  • Storici F, Bebenek K, Kunkel TA, Gordenin DA, Resnick MA (2007) RNA-templated DNA repair. Nature 447:338–341

    Article  CAS  Google Scholar 

  • Tian YC (2015) The establishment of a method of gene insertion at bovine Β-Casein locus with hLf gene mediated by CRISPR/Cas9. Doctoral dissertation

  • Tsai CS, Kong II, Lesmana A, Million G, Zhang GC, Kim SR, Jin YS (2015) Rapid and marker-free refactoring of xylose-fermenting yeast strains with Cas9/CRISPR. Biotechnol Bioeng 112:2406–2411

    Article  CAS  Google Scholar 

  • Xie WJ, Wu DY, Li XM, Cai GL, Xie GF, Lu J (2019) Metabolic engineering of Chinese rice wine Saccharomyces cerevisiae with reduced urea production by CRISPR/Cas9 system. Food Ferment Ind 45:45–51

    Google Scholar 

  • Yang H, Wang HY, Shivalila CS, Cheng AW, Shi LY, Jaenisch R (2013) One-step generation of mice carrying reporter and conditional alleles by CRISPR/Cas-mediated genome engineering. Cell 154:1370–1379

    Article  CAS  Google Scholar 

  • Zhang Q, Chen QH, Fu ML, Wang JL, Zhang HB, He GQ (2008) Construction of recombinant industrial Saccharomyces cerevisiae strain with bglS gene insertion into PEP4 locus by homologous recombination. J Zhejiang Univ Sci B 9:527–535

    Article  CAS  Google Scholar 

  • Zhou YX, Zhu SY, Cai CZ, Yuan PF, Li CM, Huang YY, Wei WS (2014) High-throughput screening of a CRISPR/Cas9 library for functional genomics in human cells. Nature 509:487–491

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was funded by the Hebei Grass Industry Innovation team of Modern Agricutural Industry Teachnology System (HBCT 2018050204). The work was supported by the Key Laboratory of Microbial Diversity Research and Application of Hebei Province, College of Life Sciences, Hebei University.

Author information

Authors and Affiliations

Authors

Contributions

XG, implementation of the experiment. YW, MW, JH, XW, MY, English check. HT, designing experimental program.

Corresponding author

Correspondence to Hui Tang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest in the publication.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, X., Wang, Y., Wu, M. et al. Gene insertion in Saccharomyces cerevisiae using the CRISPR/Cas9 system. 3 Biotech 11, 90 (2021). https://doi.org/10.1007/s13205-021-02648-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13205-021-02648-4

Keywords

Navigation