Skip to main content
Log in

Roles of putative His-to-Asp signaling modules HPT-1 and RRG-2, on viability and sensitivity to osmotic and oxidative stresses in Neurospora crassa

  • Research Article
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

Neurospora crassa has a putative histidine phosphotransfer protein (HPT-1) that transfers signals from 11 histidine kinases to two putative response regulators (RRG-1 and RRG-2) in its histidine-to-aspartate phosphorelay system. The hpt-1 gene was successfully disrupted in the os-2 (MAP kinase gene) mutant, but not in the wild-type strain in this study. Crossing the resultant hpt-1; os-2 mutants with the wild-type or os-1 (histidine kinase gene) mutant strains produced no progeny with hpt-1 or os-1; hpt-1 mutation, strongly suggesting that hpt-1 is essential for growth unless downstream OS-2 is inactivated. hpt-1 mutation partially recovered the osmotic sensitivity of os-2 mutants, implying the involvement of yeast Skn7-like RRG-2 in osmoregulation. However, the rrg-2 disruption did not change the osmotic sensitivity of the wild-type strain and the os-2 mutant, suggesting that rrg-2 did not participate in the osmoregulation. Both rrg-2 and os-2 single mutation slightly increased sensitivity to t-butyl hydroperoxide, and rrg-2 and hpt-1 mutations increased the os-2 mutant’s sensitivity. Although OS-1 is considered as a positive regulator of OS-2 MAP kinase, our results suggested that HPT-1 negatively regulated downstream MAP kinase cascade, and that OS-2 and RRG-2 probably participate independently in the oxidative stress response in N. crassa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Akhtar N, Blomberg A, Adler L (1997) Osmoregulation and protein expression in a pbs2delta mutant of Saccharomyces cerevisiae during adaptation to hypersaline stress. FEBS Lett 403:173–180

    Article  PubMed  CAS  Google Scholar 

  • Bahn YS, Kojima K, Cox GM, Heitman JA (2006) A unique fungal two-component system regulates stress responses, drug sensitivity, sexual development, and virulence of Cryptococcus neoformans. Mol Biol Cell 17:3122–3135

    Article  PubMed  CAS  Google Scholar 

  • Banno S, Ochiai N, Noguchi R, Kimura M, Yamaguchi I, Kanzaki S, Murayama T, Fujimura M (2005) A catalytic subunit of cyclic AMP-dependent protein kinase, PKAC-1, regulates asexual differentiation in Neurospora crassa. Genes Genet Syst 80:25–34

    Article  PubMed  CAS  Google Scholar 

  • Borkovich KA, Alex LA, Yarden O, Freitag M, Turner GE, Read ND, Seiler S, Bell-Pedersen D, Paietta J, Plesofsky N, Plamann M, Goodrich-Tanrikulu M, Schulte U, Mannhaupt G, Nargang FE, Radford A, Selitrennikoff C, Galagan JE, Dunlap JC, Loros JJ, Catcheside D, Inoue H, Aramayo R, Polymenis M, Selker EU, Sachs MS, Marzluf GA, Paulsen I, Davis R, Ebbole DJ, Zelter A, Kalkman ER, O’Rourke R, Bowring F, Yeadon J, Ishii C, Suzuki K, Sakai W, Pratt R (2004) Lessons from the genome sequence of Neurospora crassa: tracing the path from genomic blueprint to multicellular organism. Microbiol Mol Biol Rev 68:1–108

    Article  PubMed  CAS  Google Scholar 

  • Brown JL, Bussey H, Stewart RC (1994) Yeast Skn7p functions in a eukaryotic two-component regulatory pathway. EMBO J 13:5186–5194

    PubMed  CAS  Google Scholar 

  • Catlett NL, Yoder OC, Turgeon BG (2003) Whole-genome analysis of two-component signal transduction genes in fungal pathogens. Eukaryot Cell 2:1151–1161

    Article  PubMed  CAS  Google Scholar 

  • Clemons KV, Miller TK, Selitrennikoff CP, Stevens DA (2002) Fos-1, a putative histidine kinase as a virulence factor for systemic aspergillosis. Med Mycol 40:259–262

    PubMed  CAS  Google Scholar 

  • Davis RH, de Serres FJ (1971) Genetic and microbiological research techniques for Neurospora crassa. Methods Enzymol 17:79–143

    Article  Google Scholar 

  • Fujimura M, Ochiai N, Ichiishi A, Usami R, Horikoshi K, Yamaguchi I (2000a) Sensitivity to phenylpyrrole fungicides and abnormal glycerol accumulation in os and cut mutant strains of Neurospora crassa. J Pestic Sci 25:31–36

    CAS  Google Scholar 

  • Fujimura M, Ochiai N, Ichiishi A, Usami R, Horikoshi K, Yamaguchi I (2000b) Fungicide resistance and osmotic stress sensitivity in os mutants of Neurospora crassa. Pestic Biochem Physiol 65:125–133

    Article  Google Scholar 

  • Fujimura M, Ochiai N, Oshima M, Motoyama T, Ichiishi A, Usami R, Horikoshi K, Yamaguchi I (2003) Putative homologs of SSK22 MAPKK kinase and PBS2 MAPK kinase of Saccharomyces cerevisiae encoded by os-4 and os-5 genes for osmotic sensitivity and fungicide resistance in Neurospora crassa. Biosci Biotechnol Biochem 67:186–191

    Article  PubMed  CAS  Google Scholar 

  • Furukawa K, Hoshi Y, Maeda T, Nakajima T, Abe K (2005) Aspergillus nidulans HOG pathway is activated only by two-component signaling pathway in response to osmotic stress. Mol Microbiol 56:1246–1261

    Article  PubMed  CAS  Google Scholar 

  • Furukawa K, Katsuno Y, Urao T, Yabe T, Yamada-Okabe T, Yamada-Okabe H, Yamagata Y, Abe K, Nakajima T (2002) Isolation and functional analysis of a gene, tcsB, encoding a transmembrane hybrid-type histidine kinase from Aspergillus nidulans. Appl Environ Microbiol 68:5304–5310

    Article  PubMed  CAS  Google Scholar 

  • Gustin MC, Albertyn J, Alexander M, Davenport K (1998) MAP kinase pathways in the yeast Saccharomyces cerevisiae. Microbiol Mol Biol Rev 62:1264–1300

    PubMed  CAS  Google Scholar 

  • Hayashi M, Maeda T (2006) Activation of the HOG pathway upon cold stress in Saccharomyces cerevisiae. J Biochem (Tokyo) 139:797–803

    CAS  Google Scholar 

  • Hohmann S (2002) Osmotic stress signaling and osmoadaptation in yeasts. Microbiol Mol Biol Rev 66:300–372

    Article  PubMed  CAS  Google Scholar 

  • Irmler S, Rogniaux H, Hess D, Pillonel C (2006) Induction of OS-2 phosphorylation in Neurospora crassa by treatment with phenylpyrrole fungicides and osmotic stress. Pestic Biochem Physiol 84:25–37

    Article  CAS  Google Scholar 

  • Jones CA, Phillips S, Borkovich KA (2006) The response regulator, RRG-1, functions upstream of the OS-2 MAPK cascade. The Neurospora 2006 meeting at Asilomar, Asilomar, CA, USA

  • Kojima K, Takano Y, Yoshimi A, Tanaka C, Kikuchi T, Okuno T (2004) Fungicide activity through activation of a fungal signalling pathway. Mol Microbiol 53:1785–1796

    Article  PubMed  CAS  Google Scholar 

  • Krems B, Charizanis C, Entian KD (1996) The response regulator-like protein Pos9/Skn7 of Saccharomyces cerevisiae is involved in oxidative stress resistance. Curr Genet 29:327–334

    PubMed  CAS  Google Scholar 

  • Li S, Ault A, Malone CL, Raitt D, Dean S, Johnston LH, Deschenes RJ, Fassler JS (1998) The yeast histidine protein kinase, Sln1p, mediates phosphotransfer to two response regulators, Ssk1p and Skn7p. EMBO J 17:6952–6962

    Article  PubMed  CAS  Google Scholar 

  • Li S, Dean S, Li Z, Horecka J, Deschenes RJ, Fassler JS (2002) The eukaryotic two-component histidine kinase Sln1p regulates OCH1 via the transcription factor, Skn7p. Mol Biol Cell 13:412–424

    Article  PubMed  CAS  Google Scholar 

  • Maeda T, Wurgler-Murphy SM, Saito H (1994) A two-component system that regulates an osmosensing MAP kinase cascade in yeast. Nature 369:242–245

    Article  PubMed  CAS  Google Scholar 

  • Matsushita M, Janda KD (2002) Histidine kinases as targets for new antimicrobial agents. Bioorg Med Chem 10:855–867

    Article  PubMed  CAS  Google Scholar 

  • Morgan BA, Banks GR, Toone WM, Raitt D, Kuge S, Johnston LH (1997) The Skn7 response regulator controls gene expression in the oxidative stress response of the budding yeast Saccharomyces cerevisiae. EMBO J 16:1035–1044

    Article  PubMed  CAS  Google Scholar 

  • Motoyama T, Ohira T, Kadokura K, Ichiishi A, Fujimura M, Yamaguchi I, Kudo T (2005) An Os-1 family histidine kinase from a filamentous fungus confers fungicide-sensitivity to yeast. Curr Genet 4:298–306

    Article  CAS  Google Scholar 

  • Nakamichi N, Yanada H, Aiba H, Aoyama K, Ohmiya R, Mizuno T (2003) Characterization of the Prr1 response regulator with special reference to sexual development in Schizosaccharomyces pombe. Biosci Biotechnol Biochem 67:547–555

    Article  PubMed  CAS  Google Scholar 

  • Nemecek JC, Wuthrich M, Klein BS (2006) Global control of dimorphism and virulence in fungi. Science 312:583–588

    Article  PubMed  CAS  Google Scholar 

  • Nguyen AN, Lee A, Place W, Shiozaki K (2000) Multistep phosphorelay proteins transmit oxidative stress signals to the fission yeast stress-activated protein kinase. Mol Biol Cell 11:1169–1181

    PubMed  CAS  Google Scholar 

  • Noguchi R, Banno S, Ichikawa R, Fukumori F, Ichiishi A, Kimura M, Yamaguchi I, Fujimura M (2006) Identification of OS-2 MAP kinase-dependent genes induced in response to osmotic stress, antifungal agent fludioxonil, and heat shock in Neurospora crassa. Fungal Genet Biol doi:10.1016/j.fgb.2006.08.003

  • Ochiai N, Fujimura M, Motoyama T, Ichiishi A, Usami R, Horikoshi K, Yamaguchi I (2001) Characterization of mutations in the two-component histidine kinase gene that confer fludioxonil resistance and osmotic sensitivity in the os-1 mutants of Neurospora crassa. Pest Manag Sci 57:437–442

    Article  PubMed  CAS  Google Scholar 

  • Ochiai N, Fujimura M, Oshima M, Motoyama T, Ichiishi A, Yamada-Okabe H, Yamaguchi I (2002) Effects of iprodione and fludioxonil on glycerol synthesis and hyphal development in Candida albicans. Biosci Biotechnol Biochem 66:2209–2215

    Article  PubMed  CAS  Google Scholar 

  • Ohmiya R, Kato C, Yamada H, Aiba H, Mizuno T (1999) A fission yeast gene (prr1(+)) that encodes a response regulator implicated in oxidative stress response. J Biochem (Tokyo) 125:1061–1066

    CAS  Google Scholar 

  • Posas F, Wurgler-Murphy SM, Maeda T, Witten EA, Thai TC, Saito H (1996) Yeast HOG1 MAP kinase cascade is regulated by a multistep phosphorelay mechanism in the SLN1-YPD1-SSK1 “two-component” osmosensor. Cell 86:865–875

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

  • Selker EU (1990) Premeiotic instability of repeated sequences in Neurospora crassa. Ann Rev Genet 224:579–613

    Article  Google Scholar 

  • Singh P, Chauhan N, Ghosh A, Dixon F, Calderone R (2004) SKN7 of Candida albicans: mutant construction and phenotype analysis. Infect Immun 72:2390–2394

    Article  PubMed  CAS  Google Scholar 

  • Stephenson K, Hoch JA (2004) Developing inhibitors to selectively target two-component and phosphorelay signal transduction systems of pathogenic microorganisms. Curr Med Chem 11:765–773

    Article  PubMed  CAS  Google Scholar 

  • Tamaru H, Inoue H (1989) Isolation and characterization of a laccase-derepressed mutant of Neurospora crassa. J Bacteriol 171:6288–6293

    PubMed  CAS  Google Scholar 

  • Urao T, Yamaguchi-Shinozaki K, Shinozaki K (2000) Two-component systems in plant signal transduction. Trends Plant Sci 5:67–74

    Article  PubMed  CAS  Google Scholar 

  • Vidan S, Mitchell AP (1997) Stimulation of yeast meiotic gene expression by the glucose-repressible protein kinase Rim15p. Mol Cell Biol 17:2688–2697

    PubMed  CAS  Google Scholar 

  • Vogel HJ (1964) Distribution of lysine pathways among fungi: evolutionary implications. Am Nat 98:435–446

    Article  CAS  Google Scholar 

  • Vollmer SJ, Yanofsky C (1986) Efficient cloning of genes of Neurospora crassa. Proc Natl Acad Sci USA 83:4869–4873

    Article  PubMed  CAS  Google Scholar 

  • West AH, Stock AM (2001) Histidine kinases and response regulator proteins in two-component signaling systems. Trends Biochem Sci 26:369–376

    Article  PubMed  CAS  Google Scholar 

  • Winkler A, Arkind C, Mattison CP, Burkholder A, Knoche K, Ota I (2002) Heat stress activates the yeast high-osmolarity glycerol mitogen-activated protein kinase pathway, and protein tyrosine phosphatases are essential under heat stress. Eukaryot Cell 1:163–173

    Article  PubMed  CAS  Google Scholar 

  • Wormley FL Jr, Heinrich G, Miller JL, Perfect JR, Cox GM (2005) Identification and characterization of an SKN7 homologue in Cryptococcus neoformans. Infect Immun 73:5022–5030

    Article  PubMed  CAS  Google Scholar 

  • Yamada-Okabe T, Mio T, Ono N, Kashima Y, Matsui M, Arisawa M, Yamada-Okabe H (1999) Roles of three histidine kinase genes in hyphal development and virulence of the pathogenic fungus Candida albicans. J Bacteriol 181:7243–7247

    PubMed  CAS  Google Scholar 

  • Yoshimi A, Kojima K, Takano Y, Tanaka C (2005) Group III Histidine kinase is a positive regulator of Hog1-type mitogen-activated protein kinase in filamentous fungi. Eukaryot Cell 4:1820–1828

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Lamm R, Pillonel C, Lam S, Xu JR (2002) Osmoregulation and fungicide resistance: the Neurospora crassa os-2 gene encodes a HOG1 mitogen-activated protein kinase homologue. Appl Environ Microbiol 68:532–538

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a research grant from The INOUE ENRYO Memorial Foundation for promoting sciences from Toyo University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Makoto Fujimura.

Additional information

Communicated by J. Heitman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Banno, S., Noguchi, R., Yamashita, K. et al. Roles of putative His-to-Asp signaling modules HPT-1 and RRG-2, on viability and sensitivity to osmotic and oxidative stresses in Neurospora crassa . Curr Genet 51, 197–208 (2007). https://doi.org/10.1007/s00294-006-0116-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00294-006-0116-8

Keywords

Navigation