Skip to main content

Advertisement

Log in

Proteomic response of the biological control fungus Trichoderma atroviride to growth on the cell walls of Rhizoctonia solani

  • Research Article
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

Trichoderma atroviride has a natural ability to parasitise phytopathogenic fungi such as Rhizoctonia solani and Botrytis cinerea, therefore providing an environmentally sound alternative to chemical fungicides in the management of these pathogens. Two-dimensional electrophoresis was used to display cellular protein patterns of T. atroviride (T. harzianum P1) grown on media containing either glucose or R. solani cell walls. Protein profiles were compared to identify T. atroviride proteins up-regulated in the presence of the R. solani cell walls. Twenty-four protein spots were identified using matrix-assisted laser desorption ionisation mass spectrometry, liquid chromatography mass spectrometry and N-terminal sequencing. Identified up-regulated proteins include known fungal cell wall-degrading enzymes such as N-acetyl-β-d-glucosaminidase and 42-kDa endochitinase. Three novel proteases of T. atroviride were identified, containing sequence similarity to vacuolar serine protease, vacuolar protease A and a trypsin-like protease from known fungal proteins. Eukaryotic initiation factor 4a, superoxide dismutase and a hypothetical protein from Neurospora crassa were also up-regulated as a response to R. solani cell walls. Several cell wall-degrading enzymes were identified from the T. atroviride culture supernatant, providing further evidence that a cellular response indicative of biological control had occurred.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  CAS  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 72:248–254

    CAS  PubMed  Google Scholar 

  • Chet I (1987) Trichoderma: application, mode of action and potential as a biocontrol agent of soilborne plant pathogenic fungi. In: Chet I (ed) Innovative approaches to plant disease control. Wiley, New York, pp 137–160

    Google Scholar 

  • Chet I, Benhamou N, Haran S (1998) Mycoparasitism and lytic enymes. In: Harman GE, Kubicek CP (eds) Trichoderma and Gliocladium. Enzymes, biological control and commercial application, vol 2. Taylor and Francis, London, pp 153–171

    Google Scholar 

  • Chevallet M, Santoni V, Poinas A, Rouquie D, Fuchs A, Keiffer S, Rossignol M, Lunardi J, Garin J, Rabilloud T (1998) New zwitterionic detergents improve the analysis of membrane proteins by two-dimensional electrophoresis. Electrophoresis 19:1901–1909

    CAS  PubMed  Google Scholar 

  • Cordwell SJ, Nouwens AS, Walsh BJ (2001) Comparative proteomics of bacterial pathogens. Proteomics 1:461–472

    Article  CAS  PubMed  Google Scholar 

  • De la Cruz J, Hidalgo-Gallego A, Lora JM, Benitez T, Pintor-Toro JA, Llobell A (1992) Isolation and characterization of three chitinases from Trichoderma harzianum. Eur J Biochem 206:859–867

    Article  CAS  PubMed  Google Scholar 

  • Donzelli BG, Harman GE (2001) Interaction of ammonium, glucose, and chitin regulates the expression of cell wall degrading enzymes in Trichoderma atroviride strain P1. Appl Environ Microbiol 67:5643–5647

    Article  CAS  PubMed  Google Scholar 

  • Donzelli BGG, Lorito M, Scala F, Harman GE (2001) Cloning, sequence and structure of a gene encoding an antifungal glucan 1,3-β-glucosidase from Trichoderma atroviride (T. harzianum). Gene 277:199–208

    Article  CAS  PubMed  Google Scholar 

  • Franke J, Reimann B, Hartmann E, Kohlerl M, Wiedmann B (2001) Evidence for a nuclear passage of nascent polypeptide-associated complex units in yeast. J Cell Sci 114:2641–2648

    CAS  PubMed  Google Scholar 

  • Geremia RA, Goldman GH, Jacobs D, Ardiles W, Vila SB, Montagu M van, Herrera-Estrella A (1993) Molecular characterization of the proteinase-encoding gene prb1, related to mycoparasitism by Trichoderma harzianum. Mol Microbiol 8:603–613

    CAS  PubMed  Google Scholar 

  • Goldman GH, Hayes C, Harman GE (1994) Molecular and cellular biology of biocontrol by Trichoderma spp. Trends Biotechnol 12:478–482

    Article  CAS  PubMed  Google Scholar 

  • Gooday GW (1995) Cell walls. In: Gow NAR, Gadd GM (eds) The growing fungus. Chapman & Hall, London, pp 43–66

    Google Scholar 

  • Grinyer J, McKay M, Nevalainen H, Herbert BR (2004) Fungal proteomics: initial mapping of biological control strain Trichoderma harzianum. Curr Genet 45:163–169

    Article  CAS  PubMed  Google Scholar 

  • Harman GE, Hayes CK, Lorito M, Broadway RM, Di Pietro A, Peterbauer CK, Tronsmo A (1993) Chitinolytic enzymes of Trichoderma harzianum: purification of chitobiosidase and endochitinase. Phytopathology 83:313–318

    CAS  Google Scholar 

  • Harman GE, Latorre B, Agosin E, San Martin R, Riegel DG, Nielsen PA, Tronsmo A, Pearson RC (1996) Biological and integrated control of Botrytis bunch rot of grape using Trichoderma spp. Biol Contr 7:259–266

    Article  Google Scholar 

  • Inglis GD, Kawchuk LM (2002) Comparative degradation of oomycete, ascomycete, and basidiomycete cell walls by mycoparasitic and biocontrol fungi. Can J Microbiol 48:60–70

    Article  CAS  PubMed  Google Scholar 

  • Kullnig C, Mach RL, Lorito M, Kubicek CP (2000) Enzyme diffusion from Trichoderma atroviride (=T. harzianum P1) to Rhizoctonia solani is a prerequisite for triggering of Trichoderma ech42 gene expression before mycoparasitic contact. Appl Environ Microbiol 66:2232–2234

    Article  CAS  PubMed  Google Scholar 

  • Lora JM, De la Cruz J, Llobell A, Benitez T, Pintor-Toro JA (1995) Molecular characterization and heterologous expression of an endo-beta-1,6-glucanase gene from the mycoparasitic fungus Trichoderma harzianum. Mol Gen Genet 247:639–645

    Article  CAS  PubMed  Google Scholar 

  • Lorito M, Hayes CK, Di Petro A, Woo SL, Harman GE (1994a) Purification, characterization and synergistic activity of a glucan1,3-β-glucosidase and an N-acetyl-β-d-glucosaminidase from Trichoderma harzianum. Phytopathology 84:398–405

    CAS  Google Scholar 

  • Lorito M, Hayes CK, Zoina A, Scala F, Del Sorbo G, Woo SL, Harman GE (1994b) Potential of genes and gene products from Trichoderma sp. and Gliocladium sp. for the development of biological pesticides. Mol Biotechnol 2:209–217

    CAS  PubMed  Google Scholar 

  • Lorito M, Farkas V, Rebuffat S, Bodo B, Kubicek CP (1996) Cell wall synthesis is a major target of mycoparasitic antagonism by Trichoderma harzianum. J Bacteriol 178:6382–6385

    CAS  PubMed  Google Scholar 

  • Lorito M, Woo SL, Fernandez IG, Colucci G, Harman GE, Pintor-Toro JA, Filippone E, Muccifora S, Lawrence CB, Zoina A, Tuzun S, Scala F (1998) Genes from mycoparasitic fungi as a source for improving plant resistance to fungal pathogens. Proc Natl Acad Sci 95:7860–7865

    Article  CAS  PubMed  Google Scholar 

  • Mach RL, Peterbauer CK, Payer K, Jaksits S, Woo SL, Zeilinger S, Kullnig C, Lorito M, Kubicek CP (1999) Expression of two major chitinase genes of Trichoderma atroviride (T. harzianum P1) is triggered by different regulatory signals. Appl Environ Microbiol 65:1858–1863

    CAS  PubMed  Google Scholar 

  • Papavizas GC (1985) Trichoderma and Gliocladium: biology, ecology and potential for biocontrol. Annu Rev Phytopathol 23:23–54

    Article  Google Scholar 

  • Pappin DJC, Hojrup P, Bleasby AJ (1993) Rapid identification of proteins by peptide mass fingerprinting. Curr Biol 3:327–332

    Article  CAS  PubMed  Google Scholar 

  • Penttila M, Nevalainen H, Ratto M, Salminen E, Knowles J (1987) A versatile transformation system for the cellulolytic filamentous fungus Trichoderma reesei. Gene 61:155–164

    Article  CAS  PubMed  Google Scholar 

  • Peterbauer CK, Lorito M, Hayes CK, Harman GE, Kubicek CP (1996) Molecular cloning and expression of the nag1 gene (N-acetyl-β-d-glucosaminidase-encoding gene) from Trichoderma harzianum P1. Curr Genet 30:325–331

    Article  CAS  PubMed  Google Scholar 

  • Petersohn A, Brigulla M, Haas S, Hoheisel JD, Volker U, Hecker M (2001) Global analysis of the general stress response of Bacillus subtilis. J Bacteriol 183:5617–5631

    Article  CAS  PubMed  Google Scholar 

  • Prins TW, Tudzynski P, Von Tiedemann A, Tudzynski B, Ten Have A, Hansen ME, Tenberge K, Van Kan JAL (2000) Infection strategies of Botrytis cinerea and related necrotrophic pathogens. In: Kronstad JW (ed) Fungal pathology. Kluwer, Dordrecht, pp 33–64

    Google Scholar 

  • Schirmbock M, Lorito M, Wang YL, Hayes CK, Arisan-Atac I, Scala F, Harman GE, Kubicek CP (1994) Parallel formation and synergism of hydrolytic enzymes and peptaibol antibiotics, molecular mechanisms involved in the antagonistic action of Trichoderma harzianum against phytopathogenic fungi. Appl Environ Microbiol 60:4364–4370

    CAS  PubMed  Google Scholar 

  • Somiari RI, Sullivan A, Russell S, Somiari S, Hu H, Jordan R, George A, Katenhusen R, Buchowiecka A, Arciero C, Brzeski H, Hooke J, Shriver C (2003) High-throughput proteomic analysis of human infiltrating ductal carcinome of the breast. Proteomics 3:1863–1873

    Article  CAS  PubMed  Google Scholar 

  • Vasseur V, Van Montagu M, Goldman GH (1995) Trichoderma harzianum genes induced during growth on Rhizoctonia solani cell walls. Microbiology 141:767–774

    CAS  PubMed  Google Scholar 

  • Wilkins MR, Williams KW (1997) Cross-species protein identification using amino acid composition, peptide mass fingerprinting, isoelectric point and molecular mass: a theoretical evaluation. J Theor Biol 186:7–15

    Article  CAS  PubMed  Google Scholar 

  • Williams J, Clarkson JM, Mills PR, Cooper RM (2003) Saprotrophic and mycoparasitic components of aggressiveness of Trichoderma harzinaum groups towards the commercial mushroom Agaricus bisporus. Appl Environ Microbiol 69:4192–4199

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jasmine Grinyer.

Additional information

Communicated by U.Kück

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grinyer, J., Hunt, S., McKay, M. et al. Proteomic response of the biological control fungus Trichoderma atroviride to growth on the cell walls of Rhizoctonia solani. Curr Genet 47, 381–388 (2005). https://doi.org/10.1007/s00294-005-0575-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00294-005-0575-3

Keywords

Navigation