Skip to main content
Log in

A Sch9 protein kinase homologue controlling virulence independently of the cAMP pathway in Cryptococcus neoformans

  • Research Article
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

The polysaccharide capsule is one of the established virulence factors in Cryptococcus neoformans that provides a barrier against the host-mediated immune response. Mutation of the gene encoding the Saccharomyces cerevisiae Sch9 protein kinase homologue resulted in cells with enlarged capsules in C. neoformans. Capsule production was abrogated in sch9 pka1 double mutants, indicating that protein kinase A (PKA) signaling is still necessary for capsule formation in sch9 mutants. The sch9 mutant also exhibited increased thermal tolerance, a phenotype similar to sch9 mutant strains of S. cerevisiae. In addition, the sch9 mutant was attenuated in mating and the highly encapsulated cells were attenuated in virulence, in contrast to the pkr1 mutant, lacking the regulatory subunit of protein kinase A, that produced similarly enlarged capsules yet was increased in virulence. Interestingly, the virulence for the sch9 mutant strain could be restored by introduction of a pkr1 mutation; and the sch9 pkr1 mutant strain was dramatically increased in size and capsule thickness, suggesting that Sch9 and PKA function via different targets involved in virulence. Our findings support a model in which Sch9 modulates capsule formation and contributes to the virulence of C. neoformans both independently of and in conjunction with the cAMP–PKA pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alspaugh JA, Perfect JR, Heitman J (1997) Cryptococcus neoformans mating and virulence are regulated by the G-protein α subunit Gpa1 and cAMP. Genes Dev 11:3206–3217

    CAS  PubMed  Google Scholar 

  • Alspaugh JA, Pukkila-Worley R, Harashima T, Cavallo LM, Funnell D, Cox GM, Perfect JR, Kronstad JW, Heitman J (2002) Adenylyl cyclase functions downstream of the Gα protein GPA1 and controls mating and pathogenicity of Cryptococcus neoformans. Eukaryot Cell 1:75–84

    Article  CAS  PubMed  Google Scholar 

  • Chang YC, Penoyer LA, Kwon-Chung KJ (1996) The second capsule gene of Cryptococcus neoformans, CAP64, is essential for virulence. Infect Immun 64:1977–1983

    CAS  PubMed  Google Scholar 

  • Crauwels M, Donaton MCV, Pernambuco MB, Winderickx J, Winde JH de, Thevelein JM (1997) The Sch9 protein kinase in the yeast Saccharomyces cerevisiae controls cAPK activity and is required for nitrogen activation of the fermentable-growth-medium-induced (FGM) pathway. Microbiology 143:2627–2637

    Google Scholar 

  • D’Souza CA, Alspaugh JA, Yue C, Harashima T, Cox GM, Perfect JR, Heitman J (2001) Cyclic AMP-dependent protein kinase controls virulence of the fungal pathogen Cryptococcus neoformans. Mol Cell Biol 21:3179–3191

    Article  CAS  PubMed  Google Scholar 

  • Fabrizio P, Pozza F, Pletcher SD, Gendron CM, Longo VD (2001) Regulation of longevity and stress resistance by Sch9 in yeast. Science 292:288–290

    Article  CAS  PubMed  Google Scholar 

  • Fujita M, Yamamoto M (1998) S. pombe sck2+, a second homologue of S. cerevisiae SCH9 in fission yeast, encodes a putative protein kinase closely related to PKA in function. Curr Genet 33:248–254

    Article  CAS  PubMed  Google Scholar 

  • Granger DL, Perfect JR, Durack DT (1985) Virulence of Cryptococcus neoformans: regulation of capsule synthesis by carbon dioxide. J Clin Invest 76:508–516

    CAS  PubMed  Google Scholar 

  • Harashima T, Heitman J (2002) The Galpha protein Gpa2 controls yeast differentiation by interacting with kelch repeat proteins that mimic Gbeta subunits. Mol Cell 10:163–173

    Article  CAS  PubMed  Google Scholar 

  • Jin M, Fujita M, Culley BM, Apolinario E, Yamamoto M, Maundrell K, Hoffman CS (1995) sck1, a high copy number suppressor of defects in the cAMP-dependent protein kinase pathway in fission yeast, encodes a protein homologous to the Saccharomyces cerevisiae SCH9 kinase. Genetics 140:457–467

    CAS  PubMed  Google Scholar 

  • Kandel ES, Hay N (1999) The regulation and activities of the multifunctional serine/threonine kinase Akt/PKB. Exp Cell Res 253:210–229

    Article  CAS  PubMed  Google Scholar 

  • Kenyon C (2001) A conserved regulatory system for aging. Cell 105:165–168

    Article  CAS  PubMed  Google Scholar 

  • Kwon-Chung KJ, Bennett JE (1992) Cryptococcosis. In: Medical mycology. Lea & Febiger, Malvern, pp 397–446

    Google Scholar 

  • Kwon-Chung KJ, Rhodes JC (1986) Encapsulation and melanin formation as indicators of virulence in Cryptococcus neoformans. Infect Immun 51:218–223

    CAS  PubMed  Google Scholar 

  • Kwon-Chung KJ, Polacheck I, Popkin TJ (1982) Melanin-lacking mutants of Cryptococcus neoformans and their virulence for mice. J Bacteriol 150:1414–1421

    CAS  PubMed  Google Scholar 

  • Lin SJ, Defossez PA, Guarente L (2000) Requirement of NAD and SIR2 for life-span extension by calorie restriction in Saccharomyces cerevisiae. Science 289:2126–2128

    Article  CAS  PubMed  Google Scholar 

  • Mbonyi K, Aelst LV, Argüelles JC, Jans AWH, Thevelein JM (1990) Glucose-induced hyperaccumulation of cyclic AMP and defective glucose repression in yeast strains with reduced activity of cyclic AMP-dependent protein kinase. Mol Cell Biol 10:4518–4523

    CAS  PubMed  Google Scholar 

  • McDade HC, Cox GM (2001) A new dominant selectable marker for use in Cryptococcus neoformans. Med Mycol 39:151–154

    CAS  PubMed  Google Scholar 

  • Mitchell TG, Perfect JR (1995) Cryptococcosis in the era of AIDS—100 years after the discovery of Cryptococcus neoformans. Clin Microbiol Rev 8:515–548

    CAS  PubMed  Google Scholar 

  • Morano KA, Thiele DJ (1999) The Sch9 protein kinase regulates Hsp90 chaperone complex signal transduction activity in vivo. EMBO Rep 18:5953–5962

    Article  CAS  Google Scholar 

  • Nielsen K, Cox GM, Wang P, Toffaletti DL, Perfect J, Heitman J (2003) Sexual cycle of Cryptococcus neoformans var. grubii and virulence of congenic a and alpha isolates. Infect Immun 71:4831–4841

    Article  CAS  PubMed  Google Scholar 

  • Nikawa J, Cameron S, Toda T, Ferguson KM, Wigler M (1987) Rigorous feedback control of cAMP levels in Saccharomyces cerevisiae. Genes Dev 1:931–937

    CAS  PubMed  Google Scholar 

  • Pan X, Heitman J (1999) Cyclic AMP-dependent protein kinase regulates pseudohyphal differentiation in Saccharomyces cerevisiae. Mol Cell Biol 19:4874–4887

    CAS  PubMed  Google Scholar 

  • Perfect JR, Toffaletti DL, Rude TH (1993) The gene encoding phosphoribosylaminoimidazole carboxylase (ADE2) is essential for growth of Cryptococcus neoformans in cerebrospinal fluid. Infect Immun 61:4446–4451

    CAS  PubMed  Google Scholar 

  • Salas SD, Bennett JE, Kwon-Chung KJ, Perfect JR, Williamson PR (1996) Effect of the laccase gene, CNLAC1, on virulence of Cryptococcus neoformans. J Exp Med 184:377–386

    Article  CAS  PubMed  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.

    Google Scholar 

  • Strauss E (2001) Longevity: growing old together. Science 292:41–43

    Article  CAS  PubMed  Google Scholar 

  • Sudarshan S, Davidson RC, Heitman J, Alspaugh JA (1999) Molecular analysis of the Cryptococcus neoformans ADE2 gene, a selectable marker for transformation and gene disruption. Fungal Genet Biol 27:36–48

    Article  CAS  PubMed  Google Scholar 

  • Toda T, Cameron S, Sass P, Wigler M (1988) SCH9, a gene of Saccharomyces cerevisiae that encodes a protein distinct from, but functionally and structurally related to, cAMP-dependent protein kinase catalytic subunits. Genes Dev 2:517–527

    CAS  PubMed  Google Scholar 

  • Wang Y, Aisen P, Casadevall A (1995) Cryptococcus neoformans melanin and virulence: mechanism of action. Infect Immun 63:3131–3136

    CAS  PubMed  Google Scholar 

  • Wang P, Perfect JR, Heitman J (2000) The G-protein β subunit GPB1 is required for mating and haploid fruiting in Cryptococcus neoformans. Mol Cell Biol 20:352–362

    PubMed  Google Scholar 

  • Wang P, Cardenas ME, Cox GM, Perfect J, Heitman J (2001) Two cyclophilin A homologs with shared and distinct functions important for growth and virulence of Cryptococcus neoformans. EMBO J 2:511–518

    CAS  Google Scholar 

  • Zaragoza O, Casadevall A (2004) Experimental modulation of capsule size in Cryptococcus neoformans. Biol Proced Online 6:10–15

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank C. Arndt, J. King, and D. Palmer for technical assistance and thank Y.-S. Bahn, D. Fox, J. Hicks, J. Perfect and C. D’Souza for comments. This work was supported in part by the National Institutes of Health grants AI54958 (P.W.), AI39115, and AI42159 (J.H.). G.C. is the recipient of a Burroughs Wellcome Fund New Investigator Award. J.H. is an associate investigator of the Howard Hughes Medical Institute and a Burroughs Wellcome Scholar in Molecular Pathogenic Mycology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping Wang.

Additional information

Communicated by S. Hohmann

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, P., Cox, G.M. & Heitman, J. A Sch9 protein kinase homologue controlling virulence independently of the cAMP pathway in Cryptococcus neoformans. Curr Genet 46, 247–255 (2004). https://doi.org/10.1007/s00294-004-0529-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00294-004-0529-1

Keywords

Navigation