Skip to main content
Log in

Regulation of glycolysis in Kluyveromyces lactis: role of KlGCR1 and KlGCR2 in glucose uptake and catabolism

  • Research Article
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

In Kluyveromyces lactis, the casein kinase I (Rag8p) regulates the transcription of glycolytic genes and the expression of the low-affinity glucose transporter gene RAG1. This control involves the transcription factor Sck1p, a homologue of Sgc1p of Saccharomyces cerevisiae. SGC1 is known to interact genetically with ScGCR1 and ScGCR2, which code for regulators of glycolytic gene expression. Therefore, we studied the role of KlGCR1 and KlGCR2 genes in K. lactis. The Klgcr1 null mutant could not grow on glucose when respiration was blocked by antimycin A (Ragphenotype). In contrast, the Klgcr2 null mutant could grow under the same conditions, although at a reduced rate. In both mutants, the transcription of glycolytic genes was affected, while that of ribosomal protein genes was not modified. Furthermore, the transcription of the glucose permease genes was also found to be affected in the two mutants, although dissimilarly. While RAG1 transcription decreased at high glucose concentrations, the expression of the high-affinity glucose permease gene HGT1 was unexpectedly impaired under gluconeogenic conditions, in the absence of glucose. Gel mobility shift assays performed with purified maltose-binding protein–KlGcr1p showed that KlGcr1p could interact directly with the promoters of the glycolytic genes, but not with the promoters of the glucose permease genes. Thus, the control exerted by KlGcr1p and KlGcr2p upon glucose transporter genes is probably indirect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3A, B
Fig. 4A, B
Fig. 5A, B
Fig. 6
Fig. 7A, B
Fig. 8A–D

Similar content being viewed by others

References

  • Baker HV (1991) GCR1 of Saccharomyces cerevisiae encodes a DNA binding protein whose binding is abolished by mutations in the CTTCC sequence motif. Proc Natl Acad Sci USA 88:9443–9447

    CAS  PubMed  Google Scholar 

  • Betina S, Goffrini P, Ferrero I, Wésolowski-Louvel M (2001) RAG4 gene encodes a glucose sensor in Kluyveromyces lactis. Genetics 158:541–548

    CAS  PubMed  Google Scholar 

  • Bianchi MM, Tizzani L, Destruelle M, Frontali L, Wésolowski-Louvel M (1996) The “petite-negative” yeast Kluyveromyces lactis has a single pyruvate decarboxylase gene. Mol Microbiol 19:22–36

    Article  Google Scholar 

  • Billard P, Ménart S, Blaisonneau J, Bolotin-Fukuhara M, Fukuhara H, Wésolowski-Louvel M (1996) Glucose uptake in Kluyveromyces lactis: role of the HGT1 gene in glucose transport. J Bacteriol 178:5860–5866

    CAS  PubMed  Google Scholar 

  • Blaisonneau J, Fukuhara H, Wésolowski-Louvel M (1997) The Kluyveromyces lactis equivalent of casein kinase I is required for the transcription of the gene encoding the low-affinity glucose permease. Mol Gen Genet 253:469–477

    CAS  PubMed  Google Scholar 

  • Boles E, Zimmermann FK (1993) Induction of pyruvate decarboxylase in glycolysis mutants of Saccharomyces cerevisiae correlates with the concentrations of three-carbon glycolytic metabolites. Arch Microbiol 160:324–328

    CAS  PubMed  Google Scholar 

  • Bolotin-Fukuhara M, Toffano-Nioche C, Artiguenave F, Duchateau-Nguyen G, Lemaire M, Marmeisse R, Montrocher R, Robert C, Termier M, Wincker P, Wésolowski-Louvel M (2000) Genomic exploration of the hemiascomycetous yeasts: 11. Kluyveromyces lactis. FEBS Lett 487:66–70

    Article  CAS  PubMed  Google Scholar 

  • Breunig KD, Bolotin-Fukuhara M, Bianchi MM, Bourgarel D, Falcone C, Ferrero I, Frontali L, Goffrini P, Kruger JJ, Mazzoni C, Milkowski C, Steensma Y, Wésolowski-Louvel M, Zeeman AM (2000) Regulation of primary carbon metabolism in Kluyveromyces lactis. Enzyme Microb Technol 26:771–780

    Article  CAS  PubMed  Google Scholar 

  • Chambers A, Packham EA, Graham IR (1995) Control of glycolytic gene expression in the budding yeast (Saccharomyces cerevisiae) Curr Genet 29:1–9

  • Chen XJ (1996) Low- and high-copy-number shuttle vectors for replication in the budding yeast Kluyveromyces lactis. Gene 172:131–136

    CAS  PubMed  Google Scholar 

  • Chen XJ, Wésolowski-Louvel M, Fukuhara H (1992) Glucose transport in the yeast Kluyveromyces lactis. II. Transcriptional regulation of the glucose transporter gene RAG1. Mol Gen Genet 33:97–105

    Google Scholar 

  • Clifton D, Fraenkel DG (1981) The gcr (glycolysis regulation) mutation of Saccharomyces cerevisiae. J Biol Chem 256:13074–13078

    CAS  PubMed  Google Scholar 

  • Deminoff SJ, Santangelo GM (2001) Rap1p requires Gcr1p and Gcr2p homodimers to activate ribosomal protein and glycolytic genes, respectively. Genetics 158:133–143

    CAS  PubMed  Google Scholar 

  • Dohmen RJ, Strasser AWM, Höner CB, Hollenberg CP (1991) An efficient transformation procedure enabling long-term storage of competent cells of various yeast genera. Yeast 7:691–692

    CAS  PubMed  Google Scholar 

  • Drazinic CM, Smerage JB, Lopez MC, Baker HV (1996) Activation mechanism of the multifunctional transcription factor repressor-activator protein 1 (Rap1p) Mol Cell Biol 16:3187–3196

  • Gietz RD, Sugino A (1988) New yeast-Escherichia coli shuttle vectors constructed with in vitro mutagenized yeast genes lacking six-base pair restriction sites. Gene 74:527–534

    CAS  PubMed  Google Scholar 

  • Goffrini P, Algeri AA, Donnini C, Wésolowski-Louvel M, Ferrero I (1989) RAG1 and RAG2: nuclear genes involved in the dependence/independence on mitochondrial respiratory function for the growth on sugars. Yeast 5:99–106

    CAS  PubMed  Google Scholar 

  • Goffrini P, Wésolowski-Louvel M, Ferrero I (1991) A phosphoglucose isomerase gene is involved in the Rag phenotype of the yeast Kluyveromyces lactis. Mol Gen Genet 228:401–409

    CAS  PubMed  Google Scholar 

  • Goncalves PM, Griffoen G, Hbelman JP, Planta RJ (1997) Signaling pathways leading to transcriptional regulation of genes involved in the activation of glycolysis in yeast. Mol Microbiol 25:483–493

    CAS  PubMed  Google Scholar 

  • Haw R, Yarragudi AD, Uemura H (2001) Isolation of GCR1, a major transcription factor of glycolytic genes in Saccharomyces cerevisiae, from Kluyveromyces lactis. Yeast 18:729–735

    CAS  PubMed  Google Scholar 

  • Holland MJ, Yokoi T, Holland JP, Myambo K, Innis MA (1987) The GCR1 gene encodes a positive transcriptional regulator of the enolase and glyceraldehyde-3-phosphate dehydrogenase gene families in Saccharomyces cerevisiae. Mol Cell Biol 7:813–820

    CAS  PubMed  Google Scholar 

  • Huie MA, Scott EW, Drazinic CM, Lopez MC, Hornstra IK, Yang TP, Baker HV (1992) Characterization of the DNA-binding activity of GCR1: in vivo evidence for two GCR1-binding sites in the upstream activating sequence of TPI of Saccharomyces cerevisiae. Mol Cell Biol 12:2690–2700

    CAS  PubMed  Google Scholar 

  • Iost I, Dreyfus M (1995) The stability of Escherichia coli lacZ mRNA depends upon the simultaneity of its synthesis and translation. EMBO J 14:3252–3561

    CAS  PubMed  Google Scholar 

  • Ito H, Fukuda Y, Murata K, Kimura A (1983) Transformation of intact yeast cells treated with alkali cations. J Bacteriol 153:163–168

    CAS  PubMed  Google Scholar 

  • Kief DR, Warner JR (1981) Coordinate control of syntheses of ribosomal ribonucleic acid and ribosomal proteins during nutritional shift-up in Saccharomyces cerevisiae. Mol Cell Biol 1:1007–1015

    CAS  PubMed  Google Scholar 

  • Larson PG, Rossi JJ (1991) Altered response to growth rate changes in Kluyveromyces lactis versus Saccharomyces cerevisiae as demonstrated by heterologous expression of ribosomal protein 59 (CRY1). Nucleic Acids Res 19:4701–4707

    CAS  PubMed  Google Scholar 

  • Lemaire M, Guyon A, Betina S, Wésolowski-Louvel M (2002) Regulation of glycolysis by casein kinase I (Rag8p) in Kluyveromyces lactis involves a DNA-binding protein, Sck1p, a homologue of Sgc1p of Saccharomyces cerevisiae. Curr Genet 40:355–364

    Article  CAS  PubMed  Google Scholar 

  • Lopez MC, Baker HV (2000) Understanding the growth phenotype of the yeast gcr1 mutant in terms of global genomic expression patterns. J Bacteriol 182:4970–4978

    CAS  PubMed  Google Scholar 

  • Lundblad V (1997) Currents protocols in molecular biology. Wiley, New York

  • Müller S, Boles E, May M, Zimmermann FK (1995) Different internal metabolites trigger the induction of glycolytic gene expression in Saccharomyces cerevisiae. J Bacteriol 177:4517–4519

    PubMed  Google Scholar 

  • Nishi K, Park CS, Pepper AE, Eichinger G, Innis MA, Holland MJ (1995) The GCR1 requirement for glycolytic gene expression is suppressed by dominant mutations in the SGC1 gene which encodes a novel basic-helix-loop-helix protein. Mol Cell Biol 15:2646–2653

    CAS  PubMed  Google Scholar 

  • Özcan S, Johnston M (1999) Function and regulation of yeast hexose transporters. Microbiol Mol Biol Rev 63:554–569

    CAS  Google Scholar 

  • Prior C, Mamessier P, Fukuhara H, Chen XJ, Wésolowski-Louvel M (1993) The hexokinase gene is required for the transcriptional regulation of the glucose transporter gene RAG1 in Kluyveromyces lactis. Mol Cell Biol 13:3882–3889

    CAS  PubMed  Google Scholar 

  • Santangelo GM, Tornow J (1990) Efficient transcription of the glycolytic gene ADH1 and three translational component genes requires the GCR1 product, which can act through TUF/GRF/RAP binding sites Mol Cell Biol 10:859–862

  • Sato T, Lopez MC, Sugioka S, Jigami Y, Baker HV, Uemura H (1999) The E-box DNA binding protein Sgc1p suppresses the gcr2 mutation, which is involved in transcriptional activation of glycolytic genes in Saccharomyces cerevisiae. FEBS Lett 463:307–311

    CAS  PubMed  Google Scholar 

  • Sikorski RS, Hieter P (1989) A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122:19–27

    CAS  PubMed  Google Scholar 

  • Thierry A, Fairhead C, Dujon B (1990) The complete sequence of the 8.2 kb segment left of MAT on chromosome III reveals five ORFs, including a gene for yeast ribokinase. Yeast 6:521–534

    CAS  PubMed  Google Scholar 

  • Tornow J, Zeng X, Gao W, Santangelo GM (1993) GCR1, a transcriptional activator in Saccharomyces cerevisiae complexes with RAP1 and can function without its DNA binding domain. EMBO J 12:2431–2437

    CAS  PubMed  Google Scholar 

  • Türkel S, Bisson LF (1999) Transcription of the HXT4 gene is regulated by Gcr1p and Gcr2p in the yeast S. cerevisiae. Yeast 15:1045–1057

    Article  PubMed  Google Scholar 

  • Uemura H, Fraenkel DG (1990) gcr2, a new mutation affecting glycolytic gene expression in Saccharomyces cerevisiae. Mol Cell Biol 10:6389–6396

    CAS  PubMed  Google Scholar 

  • Uemura H, Jigami Y (1992) Role of GCR2 in transcriptional activation of yeast glycolytic genes. Mol Cell Biol 12:3834–3842

    CAS  PubMed  Google Scholar 

  • Wach A (1996) PCR-synthesis of marker cassettes with long flanking homology regions for gene disruption in S. cerevisiae. Yeast 12:259–265

    Article  CAS  PubMed  Google Scholar 

  • Wésolowski-Louvel M, Goffrini P, Ferrero I, Fukuhara H (1992a) Glucose transport in the yeast Kluyveromyces lactis. I. Properties of an inducible low-affinity glucose transporter gene. Mol Gen Genet 33:89–96

    Google Scholar 

  • Wésolowski-Louvel M, Prior C, Bornecque D, Fukuhara H (1992b) Rag- mutations involved in glucose metabolism in yeast: isolation and genetic characterization. Yeast 8:711–719

    Google Scholar 

  • Zeng N, Deminoff SJ, Santangelo GM (1997) Specialized Rap1p/Gcr1p transcriptional activation through Gcr1p DNA contacts requires Gcr2p, as does hyperphosphorylation of Gcr1p. Genetics 147:495–506

    Google Scholar 

Download references

Acknowledgements

H.N. was the recipient of a fellowship from the Ministère de la Recherche of France. We are grateful to Hiroshi Uemura for providing plasmids pL1617-9 and pL574-4. We thank Hiroshi Fukuhara and Steve Neil for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Wésolowski-Louvel.

Additional information

Communicated by K. Breunig

Rights and permissions

Reprints and permissions

About this article

Cite this article

Neil, H., Lemaire, M. & Wésolowski-Louvel, M. Regulation of glycolysis in Kluyveromyces lactis: role of KlGCR1 and KlGCR2 in glucose uptake and catabolism. Curr Genet 45, 129–139 (2004). https://doi.org/10.1007/s00294-003-0473-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00294-003-0473-5

Keywords

Navigation