Skip to main content
Log in

Cloning and targeted disruption, via Agrobacterium tumefaciens-mediated transformation, of a trypsin protease gene from the vascular wilt fungus Verticillium dahliae

  • Research Article
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

A gene encoding a trypsin protease was isolated from a tomato isolate of Verticillium dahliae. The gene, designated VTP1, contains two introns and is predicted to encode a protein of 256 amino acids. The gene is present in V. dahliae isolates from different host plants and in V. albo-atrum; weakly hybridizing sequences are present in V. tricorpus. VTP1 cDNA sequences were identified in a sequence tag analysis of genes expressed under growth conditions that promote microsclerotia development. Replacement of the gene, by Agrobacterium tumefaciens-mediated transformation (ATMT), with a mutant allele construct did not noticeably alter either pathogenicity or growth in culture. Searches of expressed sequence tag databases showed that, in addition to the VTP1 gene, V. dahliae contains two genes encoding subtilisin-like proteases similar to those produced by pathogenic Aspergillus spp. This is the first description of the application of ATMT to the molecular analysis of phytopathogenic Verticillium spp.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2A–C
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abuodeh RO, Orbach MJ, Mandel MA, Das A, Galgiani JN (2000) Genetic transformation of Coccidioides immitis facilitated by Agrobacterium tumefaciens. J Infect Dis 181:2106–2110

    CAS  PubMed  Google Scholar 

  • Bidochka MJ, Burke S, Ng L (1999) Extracellular hydrolytic enzymes in the fungal genus Verticillium: adaptations for pathogenesis. Can J Microbiol 45:856–864

    Article  CAS  Google Scholar 

  • Bindschedler LV, Sanchez P, Dunn S, Mikan J, Thangavelu M, Clarkson JM, Cooper RM (2003) Deletion of the SNP1 trypsin protease from Stagonospora nodorum reveals another major protease expressed during infection. Fungal Genet Biol 38:43–53

    Article  CAS  PubMed  Google Scholar 

  • Bundock P, Dulk-Ras A den, Beijersbergen A, Hooykaas PJJ (1995) Trans-kingdom T-DNA transfer from Agrobacterium tumefaciens to Saccharomyces cerevisiae. EMBO J 14:3206–3214

    CAS  PubMed  Google Scholar 

  • Carroll AM, Sweigard JA, Valent B (1994) Improved vectors for selecting resistance to hygromycin. Fungal Genet Newsl 41:22

    Google Scholar 

  • Chen X, Stone M, Schlagnhaufer C, Romaine CP (2000) A fruiting body tissue method for efficient Agrobacterium-mediated transformation of Agaricus bisporus. Appl Environ Microbiol 66:4510–4513

    CAS  PubMed  Google Scholar 

  • Combier JP, Melayah D, Raffier C, Gay G, Marmeisse R (2003) Agrobacetrium tumefaciens-mediated transformation as a tool for insertional mutagenesis in the symbiotic ectomycorrhizal fungus Hebeloma cylindrosporum. FEMS Microbiol 220:141–148

    CAS  Google Scholar 

  • Covert SF, Kapoor P, Lee M, Briley A, Nairn CJ (2001) Agrobacterium tumefaciens-mediated transformation of Fusarium circinatum. Mycol Res 105:259–264

    CAS  Google Scholar 

  • DiPietro A, Huetas-Gonzalez MD, AGutierrez-Corona JF, Martinez-Cadena G, Meglecz E, Roncero MIG (2001) Molecular characterization of a subtilase from the vascular wilt fungus Fusarium oxysporum. Mol Plant-Microbe Interact 14:653–662

    Google Scholar 

  • Dobinson KF (1995) Genetic transformation of the vascular wilt fungus Verticillium dahliae. Can J Bot 73:710–715

    Google Scholar 

  • Dobinson KF, Harris RE, Hamer JE (1993) Grasshopper, a long terminal repeat (LTR) retroelement in the phytopathogenic fungus Magnaporthe grisea. Mol Plant-Microbe Interact 6:114–126

    Google Scholar 

  • Dobinson KF, Tenuta GK, Lazarovits G (1996) Occurrence of race 2 of Verticillium dahliae in processing tomato fields in southwestern Ontario. Can J Plant Pathol 18:55–58

    Google Scholar 

  • Dobinson KF, Lecomte N, Lazarovits G (1997) Production of an extracellular trypsin-like protease by the fungal plant pathogen Verticillium dahliae. Can J Microbiol 43:227–233

    CAS  PubMed  Google Scholar 

  • Dobinson KF, Patterson NA, White GJ, Grant S (1998) DNA fingerprinting and vegetative compatibility analysis indicate multiple origins for Verticillium dahliae race 2 tomato isolates from Ontario, Canada. Mycol Res 102:1089–1095

    Article  CAS  Google Scholar 

  • Edelmann SE, Staben C (1994) A statistical analysis of sequence features within genes from Neurospora crassa. Exp Mycol 18:70–81

    Article  Google Scholar 

  • Görlach JM, Van Der Knaap E, Walton JD (1998) Cloning and targeted disruption of MLG1, a gene encoding two of three extracellular mixed-link glucanases of Cochliobolus carbonum. Appl Env Microbiol 64:385–391

    Google Scholar 

  • Gouka RJ, Gerk C, Hooykaas PJJ, Bundock R, Musters W, Verrips CT, Groot MJA de (1999) Transformation of Aspergillus awamori by Agrobacterium tumefaciens-mediated homologous recombination. Nat Biotechnol 17:598–601

    Article  CAS  PubMed  Google Scholar 

  • Groot MJA de, Bundock P, Hooykaas PJJ, Beijersbergen AGM (1998) Agrobacterium tumefaciens-mediated transformation of filamentous fungi. Nat Biotechnol 16:839–842

    PubMed  Google Scholar 

  • Hanif M, Pardo AG, Gorfer M, Raudaskoski M (2002) T-DNA transfer and integration in the ectomyrrhizal fungus Suillus bovinus using hygromycin B as a selectable marker. Curr Genet 41:183–188

    Google Scholar 

  • Klimes A, Dobinson KF (2003) Functional characterization of a Verticillium dahliae hydrophobin gene homologue. Can J Plant Pathol 25:321

    Google Scholar 

  • Lambert F, Pujarniscle S (1984) Purification and properties of the proteinase produced in vitro by Verticillium dahliae. Can J Microbiol 30:1488–1493

    CAS  Google Scholar 

  • Malonek S, Meinhardt F (2001) Agrobacterium tumefaciens-mediated genetic transformation of the phytopathogenic ascomycete Calonectria morganii. Curr Genet 40:152–155

    CAS  PubMed  Google Scholar 

  • Mullins ED, Chen X, Romaine P, Raina R, Geiser DM, Kang S (2001) Agrobacterium-mediated transformation of Fusarium oxysporum: an efficient tool for insertional mutagenesis and gene transfer. Phytopathology 91:173–180

    CAS  Google Scholar 

  • Murphy JM, Walton JD (1996) Three extracellular proteases from Cochliobolus carbonum: cloning and targeted disruption of ALP1. Mol Plant-Microbe Interact 9:290–297

    Google Scholar 

  • Neumann MJ, Dobinson KF (2003) Sequence tag analysis of gene expression during pathogenic growth and microsclerotia development in the vascular wilt pathogen Verticillium dahliae. Fungal Genet Biol 38:54–62

    Article  CAS  PubMed  Google Scholar 

  • Pegg GF (1981) Biochemistry and physiology of pathogenesis. In: Mace ME, Bell AA, Beckman CH (eds) Fungal wilt diseases of plants. Academic Press, New York, pp 193–253

  • Pegg GF, Brady BL (2002) Verticillium wilts. CABI, Wallingford

  • Puhalla JE, Bell AA (1981) Genetics and biochemistry of wilt pathogens. In: Mace ME, Bell AA, Beckman CH (eds) Fungal wilt diseases of plants. Academic Press, New York, pp 146–192

  • Rho HS, Kang S, Lee YH (2001) Agrobacterium tumefaciens-mediated transformation of the plant pathogenic fungus, Magnaporthe grisea. Mol Cells 12:407–411

    CAS  PubMed  Google Scholar 

  • Rypniewski WR, Hastrup S, Betzel C, Dauter M, Dauter Z, Papendorf G, Branner S, Wilson KS (1993) The sequence and X-ray structure of the trypsin from Fusarium oxysporum. Protein Eng 6:341–348

    CAS  PubMed  Google Scholar 

  • Schnathorst WC (1981) Life cycle and epidemiology of Verticillium. In: Mace ME, Bell AA, Beckman CH (eds) Fungal wilt diseases of plants. Academic Press, New York, pp 81–111

  • Scott-Craig JS, Panaccione DG, Pocard J-A, Walton JD (1992) The cyclic peptide synthetase catalyzing HC-toxin production in the filamentous fungus Cochliobolus carbonum is encoded by a 15.7-kilobase open reading frame. J Biol Chem 267:26044–26049

    CAS  PubMed  Google Scholar 

  • Segers R, Butt TM, Carder JH, Keen JN, Kerry BR, Peberdy JF (1999) The subtilisins of fungal pathogens of insects, nematodes and plants: distribution and variation. Mycol Res 103:395–402

    Article  CAS  Google Scholar 

  • St. Leger RJ, Joshi L, Roberts DW (1997) Adaptation of proteases and carbohydrases of saprophytic, phytopathogenic and entomopathogenic fungi to the requirements of their ecological niches. Microbiology 143:1983–1992

    PubMed  Google Scholar 

  • Sullivan TD, Rooney PJ, Klein BS (2002) Agrobacterium tumefaciens integrates transfer DNA into single chromosomal sites of dimorphic fungi and yields homokaryotic progeny from multinucleate yeast. Eukaryot Cell 1:895–905

    Article  CAS  PubMed  Google Scholar 

  • Timberlake WE (1986) Isolation of stage- and cell-specific genes from fungi. In: Bailey J (ed) Biology and molecular biology of plant–pathogen interactions, vol 1. Springer, Berlin Heidelberg New York, pp 343–357

  • Zhang A, Lu P, Dahl-Roshak AM, Paress PS, Kennedy S, Tkacz JS, An Z (2003) Efficient disruption of a polyketide synthase gene (pks1) required for melanine synthesis through Agrobacterium-mediated transformation of Glarea lozoyensis. Mol Gen Genomics 268:645–655

    CAS  Google Scholar 

  • Zwiers LH, De Waard MA (2001) Efficient Agrobacterium tumefaciens-mediated gene disruption in the phytopathogen Mycosphaerella graminicola. Curr Genet 39:388–393

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank E. Antone for technical assistance, I. van Grinsven and S. Millar for sequence analysis, A. Molnar for preparation of Figs. 3A and 4, S. Evans for assistance with preparation of other figures, and M. Neumann for critical reading of the manuscript. This study was supported in part by funding from the Natural Sciences and Engineering Research Council of Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katherine F. Dobinson.

Additional information

Communicated by J. Heitman

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dobinson, K.F., Grant, S.J. & Kang, S. Cloning and targeted disruption, via Agrobacterium tumefaciens-mediated transformation, of a trypsin protease gene from the vascular wilt fungus Verticillium dahliae . Curr Genet 45, 104–110 (2004). https://doi.org/10.1007/s00294-003-0464-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00294-003-0464-6

Keywords

Navigation