Skip to main content

Advertisement

Log in

The application of PCR for the isolation of a lipase gene from the genomic DNA of an Antarctic microfungus

  • Research Article
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

We successfully isolated a lipase gene (designated lipPA) directly from the genomic DNA of an Antarctic isolate of Penicillium allii using PCR and a suite of degenerate primers specifically designed to target two conserved regions of fungal lipase genes. We applied the biolistic transformation system to successfully integrate the lipPA gene into a heterologous fungal host, Trichoderma reesei, one of the most powerful secretors of extracellular proteins, and induced the transformant to secrete an active lipase into the growth medium. The recombinant lipase had a temperature optimum of 25 °C at pH 7.9 and retained greater than 50% of the maximum activity from 10 °C to 35 °C and over a pH range from 4.0 to 8.5.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3A, B.

Similar content being viewed by others

References

  • Bailey MJ, Nevalainen KMH (1981) Induction, isolation, and testing of stable Trichoderma reesei mutants with improved production of solubilizing cellulase. Enzyme Microb Technol 3:153–157

    Google Scholar 

  • Bell PJL, Sunna A, Gibbs MD, Curach NC, Nevalainen H, Bergquist PL (2002) Prospecting for novel lipase genes using PCR. Microbiology 148:2283–2291

    CAS  PubMed  Google Scholar 

  • Bergquist PL, Te′o VSJ, Gibbs MD, Cziferszky ACE, Faria FP de, Azevedo MO, Nevalainen KMH (2002) Production of recombinant bleaching enzymes from thermophilic microorganisms in fungal hosts. Appl Biochem Biotechnol 98:165–176

    Google Scholar 

  • Bornscheuer UT, Bessler C, Srinivas R, Krishna SH (2002) Optimising lipases and related enzymes for efficient application. Trends Biotechnol 20:433–437

    Article  CAS  PubMed  Google Scholar 

  • Britton HS, Robinson RA (1931) Universal buffer solutions and the dissociation constant of veronal. J Chem Soc 1931:1456–1462

    Google Scholar 

  • Brzozowski AM, Savage H, Verma CS, Turkenburg JP, Lawson DM, Svendsen A, Patkar S (2000) Structural origins of the interfacial activation in Thermomyces (Humicola) lanuginosa lipase. Biochemistry 39:15071–15082

    Article  CAS  PubMed  Google Scholar 

  • Chung GH, Lee YP, Jeohn GH, Yoo OJ, Rhee JS (1991) Cloning and nucleotide sequence of thermostable lipase gene from Pseudomonas fluorenscens. Agric Biol Chem 55:2359–2365

    CAS  PubMed  Google Scholar 

  • Eggert T, Pancreac′h G, Douchet I, Verger R, Jaeger K-E (2000) A novel extracellular esterase from Bacillus subtilis and its conversion to a monoacylglycerol lipase. Eur J Biochem 267:6459–6469

    CAS  PubMed  Google Scholar 

  • Faria FP de, Te′o VSJ, Bergquist PL, Azevedo MO, Nevalainen HKM (2002) Expression and processing of a major xylanase (XYN2) from the thermophilic fungus Humicola grisea var. thermoidea in Trichoderma reesei. Lett Appl Microbiol 34:119–123

    PubMed  Google Scholar 

  • Fojan P, Jonson PH, Petersen MTN, Petersen SB (2000) What distinguishes an esterase from a lipase: a novel structural approach. Biochimie 82:1033–1041

    Article  CAS  PubMed  Google Scholar 

  • Godfrey T, West S (1996) Industrial enzymology, 2nd edn. Macmillan Press, London

  • Herggård S, Gibas CJ, Subramaniam S (2000) Role of an electrostatic network of residues in the enzymatic action of the Rhizomucor miehei lipase family. Biochemistry 39:2921–2930

    Article  PubMed  Google Scholar 

  • Jaeger K-E, Ransac S, Dijkstra BW, Colson C, Heuvel M van, Misset O (1994) Bacterial lipases. FEMS Microbiol Rev 15:29–63

    CAS  PubMed  Google Scholar 

  • Jaeger K-E, Dijkstra BW, Reetz MT (1999) Bacterial biocatalysts: molecular biology, three-dimensional structures, and biotechnological applications of lipases. Annu Rev Microbiol 53:315–351

    CAS  PubMed  Google Scholar 

  • Kouker G, Jaeger K-E (1987) Specific and sensitive plate assay for bacterial lipases. Appl Environ Microbiol 53:211–213

    CAS  PubMed  Google Scholar 

  • Morris DD, Reeves RA, Gibbs MD, Saul DJ, Bergquist PL (1995) Correction of the β-mannanase domain of the celC pseudogene from Caldocellulosiruptor saccharolyticus and activity of the gene product on kraft pulp. Appl Environ Microbiol 61:2262–2269

    CAS  PubMed  Google Scholar 

  • Morris DD, Gibbs MD, Chin CW, Koh MH, Wong RW, Allison RW, Nelson PJ, Bergquist PL (1998) Cloning of the xynB gene from Dictyoglomus thermophilum Rt46B.1 and action of the gene product on Kraft pulp. Appl Environ Microbiol 64:1759–1765

    CAS  PubMed  Google Scholar 

  • Nielsen H, Krogh A (1998) Prediction of signal peptides and signal anchors by a hidden Markov model. In: AAAI Press (eds) Proceedings of the sixth international conference on intelligent systems for molecular biology. (ISBM 6) AAAI Press, Menlo Park, Calif., pp 122–130

  • Nielsen H, Engelbrecht J, Brunak S, Heijne G von (1997) Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Protein Eng 10:1–6

    CAS  Google Scholar 

  • Oh B-C, Kim H-K, Lee J-K, Kang S-C, Oh T-K (1999) Staphylococcus haemolyticus lipase: biochemical properties, substrate specificity and gene cloning. FEMS Microbiol Lett 179:385–392

    Article  CAS  PubMed  Google Scholar 

  • Paloheimo M, Mäntylä A, Vehmaanperä J, Hakola S, Lantto R, Lahtinen T, Parkkinen E, Fagerström R, Suominen P (1998) Thermostable xylanases produced by recombinant Trichoderma reesei for pulp bleaching. In: Claeyssens M, Nerinckx M, Piens K (eds) Carbohydrates from Trichoderma reesei and other microorganisms. Structures, biochemistry, genetics and applications. The Royal Society of Chemistry, Cambridge, pp 255–264

  • Pouderoyen G van, Eggert T, Jaeger K-E, Dijkstra BW (2001) The crystal structure of Bacillus subtilis lipase: a minimal α/β hydrolase fold enzyme. J Mol Biol 309:103–119

    Google Scholar 

  • Reetz MT (2002) Lipases as practical biocatalysts. Curr Opin Chem Biol 6:145–150

    Article  CAS  PubMed  Google Scholar 

  • Rose TM, Schultz ER, Henikoff JG, Pietrokovski S, McCallum CM, Henikoff S (1998) Consensus-degenerate hybrid oligonucleotide primers for amplification of distantly related sequences. Biotechnol Appl Biochem 26:1628–1635

    Article  CAS  Google Scholar 

  • Sambrook KJ, Fritsch EF, Maniatis T (1989) Molecular Cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.

    Google Scholar 

  • Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74:5463–5467

    PubMed  Google Scholar 

  • Schmidt-Dannert C (1999) Recombinant microbial lipases for biotechnological applications. Bioorg Med Chem 7:2123–2130

    Article  CAS  PubMed  Google Scholar 

  • Sharma R, Chisti Y, Banerjee UC (2001) Production, purification, characterization, and applications of lipases. Biotechnol Adv 19:627–662

    Article  CAS  Google Scholar 

  • Simons JW, Kampen MD van, Reil S, Gotz F, Egmond MR, Verheij HM (1998) Cloning, purification and characterization of the lipase from Staphylococcus epidermis—comparison of the substrate selectivity with those of other microbial lipases. Eur J Biochem 253:675–683

    Article  CAS  PubMed  Google Scholar 

  • Sunna A, Hunter L, Hutton CA, Bergquist PL (2002) Biochemical characterization of a recombinant thermoalkalophilic lipase and assessment of its substrate enantioselectivity. Enzyme Microb Technol 31:472–476

    Article  CAS  Google Scholar 

  • Te′o VSJ, Bergquist PL, Nevalainen KMH (2002) Biolistic transformation of Trichoderma reesei using the Bio-Rad seven barrels Hepta adaptor system. J Microbiol Methods 51:393–399

    Article  CAS  PubMed  Google Scholar 

  • Toida J, Fukuzawa M, Kobayashi G, Ito K, Sekiguchi J (2000) Cloning and sequencing of the triacylglycerol lipase gene of Aspergillus oryzae and its expression in Escherichia coli. FEMS Microbiol Lett 189:159–164

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

This work was supported by a Macquarie University Research Grant to J.R.B.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Ron Bradner.

Additional information

Communicated by U. Kück

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bradner, J.R., Bell, P.J.L., Te′o, V.S.J. et al. The application of PCR for the isolation of a lipase gene from the genomic DNA of an Antarctic microfungus. Curr Genet 44, 224–230 (2003). https://doi.org/10.1007/s00294-003-0440-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00294-003-0440-1

Keywords

Navigation