Skip to main content
Log in

Characterisation and expression analysis of a nitrate transporter and nitrite reductase genes, two members of a gene cluster for nitrate assimilation from the symbiotic basidiomycete Hebeloma cylindrosporum

  • Research Article
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

Symbiotic ectomycorrhizal fungi contribute to the nitrogen nutrition of their host-plants but little information is available on the molecular control of their nitrogen metabolism. We cloned and characterised genes encoding a nitrite reductase and a nitrate transporter in the ectomycorrhizal basidiomycete Hebeloma cylindrosporum. These two genes are divergently transcribed and linked to a previously cloned nitrate reductase gene, thus demonstrating that nitrate assimilation gene clusters occur in homobasidiomycetes. The nitrate transporter polypeptide (NRT2) is characterised by 12 transmembrane domains and presents both a long putative intracellular loop and a short C-terminal tail, two structural features which distinguish fungal high-affinity transporters from their plant homologues. In different wild-type genetic backgrounds, transcription of the two genes was repressed by ammonium and was strongly stimulated not only in the presence of nitrate but also in the presence of organic nitrogen sources or under nitrogen deficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

References

  • Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    PubMed  Google Scholar 

  • Amaar YG, Moore MM (1998) Mapping of the nitrate-assimilation gene cluster (crnA-niiA-niaD) and characterization of the nitrite reductase gene (niiA) in the opportunistic fungal pathogen Aspergillus fumigatus. Curr Genet 33:206–215

    Article  CAS  PubMed  Google Scholar 

  • Attwood TK, Beck ME (1994) PRINTS—a protein motif fingerprint database. Protein Eng 7:841–848

    CAS  PubMed  Google Scholar 

  • Banks GR, Shelton PA, Kanuga N, Holden DW, Spanos A (1993) The Ustilago maydis nar1 gene encoding nitrate reductase activity: sequence and transcriptional regulation. Gene 131:69–78

    Article  CAS  PubMed  Google Scholar 

  • Brito N, Avila J, Perez MD, Gonzalez C, Siverio JM (1996) The genes YNI1 and YNR1, encoding nitrite reductase and nitrate reductase respectively in the yeast Hansenula polymorpha, are clustered and coordinately regulated. Biochem J 317:89–95

    CAS  PubMed  Google Scholar 

  • Campbell WH, Kinghorn JR (1990) Functional domains of assimilatory nitrate reductases and nitrite reductases. Trends Biochem Sci 15:315–319

    CAS  PubMed  Google Scholar 

  • Chang P-K, Ehrlich KC, Lunz JE, Bhatnagar D, Cleveland TE, Bennett JW (1996) Characterization of the Aspergillus parasiticus niaD and niiA gene cluster. Curr Genet 30:68–75

    Article  CAS  PubMed  Google Scholar 

  • Crawford NM, Arst HNJ (1993) The molecular genetics of nitrate assimilation in fungi and plants. Annu Rev Genet 27:115–146

    CAS  PubMed  Google Scholar 

  • Debaud J-C, Gay G (1987) In vitro fruiting under controlled conditions of the ectomycorrhizal fungus Hebeloma cylindrosporum associated with Pinus pinaster. New Phytol 105:429–435

    Google Scholar 

  • Forde BG (2000) Nitrate transporters in plants: structure, function and regulation. Biochim Biophys Acta 1465:219–235

    CAS  PubMed  Google Scholar 

  • Fraissinet-Tachet L, Baltz R, Chong J, Kauffmann S, Fritig B, Saindrenan P (1998) Two tobacco genes induced by infection, elicitor and salicylic acid encode glucosyl transferases acting on phenylpropanoids and benzoic acid derivatives, including salicylic acid. FEBS Lett 437:319–323

    Article  CAS  PubMed  Google Scholar 

  • Gobert A, Plassard C (2002) Differential NO3-dependent patterns of NO3 uptake in Pinus pinaster, Rhizopogon roseolus and their ectomycorrhizal association. New Phytol 154:509–516

    Article  CAS  Google Scholar 

  • Gryta H, Debaud J-C, Marmeisse R (2000) Population dynamics of the symbiotic mushroom Hebeloma cylindrosporum: mycelial persistence and inbreeding. Heredity 84:294–302

    Article  CAS  PubMed  Google Scholar 

  • Henikoff S, Henikoff JG (1994) Protein family classification based on searching a database of blocks. Genomics 19:97–107

    CAS  PubMed  Google Scholar 

  • Jargeat P, Gay G, Debaud JC, Marmeisse R (2000) Transcription of a nitrate reductase gene isolated from the symbiotic basidiomycete fungus Hebeloma cylindrosporum does not require induction by nitrate. Mol Gen Genet 263:948–956

    CAS  PubMed  Google Scholar 

  • Javelle A, Rodriguez-Pastrana BR, Jacob C, Botton B, Brun A, André B, Marini AM, Chalot M (2001) Molecular characterization of two ammonium transporters from the ectomycorrhizal fungus Hebeloma cylindrosporum. FEBS Lett 505:393–398

    Article  CAS  PubMed  Google Scholar 

  • Johnstone IL, McCabe PC, Greaves P, Gurr SJ, Cole G., Brow MAD, Unkles SE, Clutterbuck AJ, Kinghorn JR, Innis MA (1990) Isolation and characterisation of the crnA-niiA-niaD gene cluster for nitrate assimilation in Aspergillus nidulans. Gene 90:181–192

    CAS  PubMed  Google Scholar 

  • Keller NP, Hohn TM (1997) Metabolic pathway gene clusters in filamentous fungi. Fungal Genet Biol 21:17–29

    Article  CAS  PubMed  Google Scholar 

  • Kinghorn JR, Unkles SE (1994) Inorganic nitrogen assimilation: molecular aspects. In: Martinelli SD, Kinghorn JR (eds) Aspergillus: 50 years on. Elsevier, Amsterdam, pp 181–194

  • Marmeisse R, Jargeat P, Wagner F, Gay G, Debaud J-C (1998) Isolation and characterization of nitrate reductase deficient mutants of the ectomycorrhizal fungus Hebeloma cylindrosporum. New Phytol 140: 311–318

    Article  CAS  Google Scholar 

  • Martin F, Botton B (1993) Nitrogen metabolism of ectomycorrhizal fungi and ectomycorrhizas. Adv Plant Pathol 9:83–102

    Google Scholar 

  • Martin F, Lorillou S (1997) Nitrogen acquisition and assimilation in ectomycorrhizal systems. In: Rennenberg H, Eschrich W, Ziegler H (eds) Trees—contributions to modern tree physiology. Backhuys, Leiden, pp 423–439

  • Marzluf GA (1997) Genetic regulation of nitrogen metabolism in the fungi. Microbiol Mol Biol Rev 61:17–32

    CAS  PubMed  Google Scholar 

  • Montanini B, Moretto N, Soragni E, Percudani R, Ottonello S (2002) A high-affinity ammonium transporter from the mycorrhizal ascomycete Tuber borchii. Fungal Genet Biol 36:22–34

    Article  CAS  PubMed  Google Scholar 

  • Muro-Pastor MI, Gonzalez R, Strauss J, Narendja F, Scazzocchio C (1999) The GATA factor AreA is essential for chromatin remodelling in a eukaryotic bidirectional promoter. EMBO J 18:1584–1597

    CAS  PubMed  Google Scholar 

  • Nehls U, Wiese J, Güttenberger M, Hampp R (1998) Carbon allocation in ectomycorrhizas: identification and expression analysis of an Amanita muscaria monosaccharide transporter. Mol Plant-Microbe Interact 11:167–176

    CAS  Google Scholar 

  • Pérez MD, González C, Avila J, Brito N, Siverio JM (1997) The YNT1 gene encoding the nitrate transporter in the yeast Hansenula polymorpha is clustered with genes YNI1 and YNR1 encoding nitrite reductase and nitrate reductase, and its disruption causes inability to grow in nitrate. Biochem J 321:397–403

    PubMed  Google Scholar 

  • Plassard C, Bonafos B, Touraine B (2000) Differential effects of mineral and organic N sources, and of ectomycorrhizal infection by Hebeloma cylindrosporum, on growth and N utilization in Pinus pinaster. Plant Cell Environ 23:1195–1205

    Google Scholar 

  • Plassard C, Guérin-Laguet EA, Véry A-A, Casarin V, Thibaud J-B (2002) Local measurements of nitrate and potassium fluxes along roots of maritime pine. Effects of ectomycorrhizal symbiosis. Plant Cell Environ 25:1–10

    Google Scholar 

  • Punt PJ, Strauss J, Smit R, Kinghorn JR, Van den Hondel CAMJJ, Scazzocchio C (1995) The intergenic region between the divergently transcribed niiA and niaD genes of Aspergillus nidulans contains multiple NIRA binding sites which act bidirectionally. Mol Cell Biol 15:5688–5699

    CAS  PubMed  Google Scholar 

  • Rambosek J and Leach J (1987) Recombinant DNA in filamentous fungi: progress and prospects, Crit Rev Biotechnol 6:357–393

    CAS  PubMed  Google Scholar 

  • Scheromm P, Plassard C, Salsac L (1990) Regulation of nitrate reductase in the ectomycorrhizal Basidiomycete Hebeloma cylindrosporum Romagn. cultured on nitrate or ammonium. New Phytol 114:441–447

    CAS  Google Scholar 

  • Schuren FHJ (1992) Regulation of gene expression during fruit-body development in Schizophyllum commune. PhD thesis, University of Groningen, Groningen

  • Sequerra J, Marmeisse R, Valla G, Normand P, Capellano A, Moiroud A (1997) Taxonomic position and intraspecific variability of the nodule forming Penicillium nodositatum inferred from R.F.L.P. analysis of the ribosomal intergenic spacer and random amplified polymorphic DNA. Mycol Res 101:465–472

    Article  CAS  Google Scholar 

  • Smith SE, Read DJ (1997) Mycorrhizal symbiosis, 2nd edn. Academic Press, London

  • Thompson JD, Higgins DG, Gibson, TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    PubMed  Google Scholar 

  • Unkles SE, Hawker KL, Grieve C, Campbell EI, Montague P, Kinghorn JR (1991) crnA encodes a nitrate transporter in Aspergillus nidulans. Proc Natl Acad Sci 88:204–208

    CAS  PubMed  Google Scholar 

  • Unkles SE, Zhou D, Siddigi MY, Kinghorn JR, Glass ADM (2001) Apparent genetic redundancy facilitates ecological plasticity for nitrate transport. EMBO J 20 6246–6255

    Google Scholar 

  • Van Kan JAL, Van den Ackerveken GFJM, De Wit PJGM (1991) Cloning and characterization of the cDNA of avirulence avr9 of the fungal pathogen Cladosporium fulvum, the causal agent of tomato leaf mold. Mol Plant-Microbe Interact 4:52–59

    Google Scholar 

  • Williams RSB, Davis MA, Howlett BJ (1995) The nitrate and nitrite reductase-encoding genes of Leptosphaeria maculans are closely linked and transcribed in the same direction. Gene 158:153–154

    Article  CAS  PubMed  Google Scholar 

  • Wipf D, Benjdia M, Tegeder M, Frommer WB (2002) Characterization of a general amino acid permease from Hebeloma cylindrosporum. FEBS Lett 528:119–124

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Pierre Audenis for preparing the illustrations. The Phanerochaete chrysosporium data have been provided freely by the JGI for use in this publication only. This work was supported by the Programme Prioritaire Microbiologie of the INRA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurence Fraissinet-Tachet.

Additional information

Communicated by U. Kück

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jargeat, P., Rekangalt, D., Verner, MC. et al. Characterisation and expression analysis of a nitrate transporter and nitrite reductase genes, two members of a gene cluster for nitrate assimilation from the symbiotic basidiomycete Hebeloma cylindrosporum . Curr Genet 43, 199–205 (2003). https://doi.org/10.1007/s00294-003-0387-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00294-003-0387-2

Keywords

Navigation