Skip to main content
Log in

Vergleichende Pathologie in der onkologischen Forschung

Comparative pathology in oncology—Best practice

  • Schwerpunkt: Next Generation Pathology
  • Published:
Die Pathologie Aims and scope Submit manuscript

Zusammenfassung

Die vergleichende experimentelle Pathologie („comparative experimental pathology“) ist ein Fachbereich an der Schnittstelle von Human- und Veterinärmedizin. Sie widmet sich der vergleichenden Erforschung von Gemeinsamkeiten und Unterschieden von spontanen und experimentell induzierten Erkrankungen bei (Modell‑)Tieren mit Krankheiten des Menschen. Der Einsatz von Tiermodellen zur Erforschung menschlicher Erkrankungen ist ein essenzieller Bestandteil biomedizinischer Forschung. Interdisziplinäre Teams mit speziesspezifischer Expertise sollten, wo immer möglich, zusammenarbeiten und in regem Austausch stehen. Wechselseitige Offenheit, Kooperations- und Lernbereitschaft bilden hierbei die Basis für eine gewinnbringende Zusammenarbeit. Forschungsprojekte unter gemeinsamer Leitung bzw. Mitarbeit von Tier- und Humanpathologen leisten so einen wesentlichen Beitrag zu qualitativ hochwertiger biomedizinischer Forschung. Entsprechende Ansätze sind nicht nur (wie in diesem Artikel ausgeführt) in der onkologischen Forschung, sondern auch in weiteren Forschungsbereichen, in denen regelmäßig Tiermodelle angewandt werden (z. B. Infektiologie, Neurologie, Entwicklungsbiologie u. a.), Erfolg versprechend.

Abstract

Comparative experimental pathology is a research field at the interface of human and veterinary medicine. It is focused on the comparative study of similarities and differences between spontaneous and experimentally induced diseases in animals (animal models) compared to human diseases. The use of animal models for studying human diseases is an essential component of biomedical research. Interdisciplinary teams with species-specific expertise should collaborate wherever possible and maintain close communication. Mutual openness, cooperation, and willingness to learn form the basis for a fruitful collaboration. Research projects jointly led by or involving both animal and human pathologists make a significant contribution to high-quality biomedical research. Such approaches are promising not only in oncological research, as outlined in this article, but also in other research areas where animal models are regularly used, such as infectiology, neurology, and developmental biology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3

Notes

  1. Aus Gründen der besseren Lesbarkeit wird auf die gleichzeitige Verwendung der Sprachformen männlich, weiblich und divers (m/w/d) verzichtet. Sämtliche Personenbezeichnungen gelten gleichermaßen für alle Geschlechter.

Literatur

  1. Alves DS, Calvaca M, Fonseca-Alves C (2022) A critical review of the risk factors associated with canine squamous cell carcinoma development. Braz J Vet Pathol 15:1–10

    Article  Google Scholar 

  2. Aupperle-Lellbach H, Grassinger JM, Floren A et al (2022) Tumour incidence in dogs in Germany: a retrospective analysis of 109,616 histopathological diagnoses (2014–2019). J Comp Pathol 198:33–55

    Article  PubMed  Google Scholar 

  3. Aupperle-Lellbach H, Heidrich D, Conrad D et al (2023) Comparative study of digital squamous cell carcinoma in giant, standard, and miniature schnauzers. Animals. https://doi.org/10.3390/ani13121990

    Article  PubMed  PubMed Central  Google Scholar 

  4. Aupperle-Lellbach H, Kehl A, Merz S et al (2019) Die BRAF-Mutation V595E im Übergangszellkarzinom–Untersuchungen zur Rassedisposition bei Terriern. Kleintiermedizin 1:30–33

    Google Scholar 

  5. Avallone G, Rasotto R, Chambers JK et al (2021) Review of histological grading systems in veterinary medicine. Vet Pathol 58:809–828

    Article  PubMed  Google Scholar 

  6. Baker M (2016) 1,500 scientists lift the lid on reproducibility. Nature 533:452–454

    Article  CAS  PubMed  Google Scholar 

  7. Ballke S, Heid I, Mogler C et al (2021) Correlation of in vivo imaging to morphomolecular pathology in translational research: challenge accepted. EJNMMI Res 11:83

    Article  PubMed  PubMed Central  Google Scholar 

  8. Barthold SW, Borowsky AD, Brayton C et al (2007) From whence will they come?—A perspective on the acute shortage of pathologists in biomedical research. J Vet Diagn Invest 19:455–456

    Article  PubMed  Google Scholar 

  9. Bergholtz H, Lien T, Lingaas F et al (2022) Comparative analysis of the molecular subtype landscape in canine and human mammary gland tumors. J Mammary Gland Biol Neoplasia 27:171–183

    Article  PubMed  PubMed Central  Google Scholar 

  10. Blacklock KL, van der Weyden L (2023) Advances in understanding spontaneously occurring melanoma in animals. Vet Sci. https://doi.org/10.3390/vetsci10030210

    Article  PubMed  PubMed Central  Google Scholar 

  11. Cerezo-Echevarria A, Grassinger JM, Beitzinger C et al (2020) Evaluating the histologic grade of digital squamous cell carcinomas in dogs with dark and light haircoat - a comparative study of the invasive front and tumor cell budding systems. Vet Sci. https://doi.org/10.3390/vetsci8010003

    Article  PubMed  PubMed Central  Google Scholar 

  12. Combarros D, Wilhelmi-Vilarrasa I, Lacroux C et al (2020) Multinodular malignant cutaneous mast cell tumor in a horse with generalized pruritus and reactive fibrosis: a case report. J Equine Vet Sci 87:102921

    Article  PubMed  Google Scholar 

  13. Davies H, Bignell GR, Cox C et al (2002) Mutations of the BRAF gene in human cancer. Nature 417:949–954

    Article  CAS  PubMed  Google Scholar 

  14. de Vries C, Konukiewitz B, Weichert W et al (2020) Do canine pancreatic neuroendocrine neoplasms resemble human pancreatic neuroendocrine tumours? A comparative morphological and Immunohistochemical investigation. J Comp Pathol 181:73–85

    Article  PubMed  Google Scholar 

  15. Dettweiler A (2022) Für Sie gelesen: Vergleichende Aspekte von Mastzelltumoren bei verschiedenen Tierarten und die Rolle von KIT hinsichtlich Prognose und Therapie. Kleintier Konkret 25:6–7

    Article  Google Scholar 

  16. Gamlem H, Nordstoga K, Glattre E (2008) Canine neoplasia—introductory paper. APMIS Suppl. https://doi.org/10.1111/j.1600-0463.2008.125m2.x

    Article  PubMed  Google Scholar 

  17. Gengenbacher N, Singhal M, Augustin HG (2017) Preclinical mouse solid tumour models: status quo, challenges and perspectives. Nat Rev Cancer 17:751–765

    Article  CAS  PubMed  Google Scholar 

  18. Giuliano EA (2010) Equine periocular neoplasia: current concepts in aetiopathogenesis and emerging treatment modalities. Equine Vet J Suppl. https://doi.org/10.1111/j.2042-3306.2010.tb05629.x

    Article  PubMed  Google Scholar 

  19. Grassinger JM, Floren A, Müller T et al (2021) Digital lesions in dogs: a statistical breed analysis of 2912 cases. Vet Sci. https://doi.org/10.3390/vetsci8070136

    Article  PubMed  PubMed Central  Google Scholar 

  20. Head K, Cullen J, Dubielzig R et al (2003) Histological classification of tumors of the intestines of domestic animals. In: Head K (Hrsg) WHO histological classification of tumors of the alimentary system of domestic animals. Armed Forces Institute of Pathology, Washington, DC, S 87–110

    Google Scholar 

  21. Hugen S, Thomas RE, German AJ et al (2017) Gastric carcinoma in canines and humans, a review. Vet Comp Oncol 15:692–705

    Article  CAS  PubMed  Google Scholar 

  22. Keenan CM, Baker J, Bradley A et al (2015) International harmonization of nomenclature and diagnostic criteria (INHAND): progress to date and future plans. Toxicol Pathol 43:730–732

    Article  CAS  PubMed  Google Scholar 

  23. Kim TM, Yang IS, Seung BJ et al (2020) Cross-species oncogenic signatures of breast cancer in canine mammary tumors. Nat Commun 11:3616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kittel B, Ruehl-Fehlert C, Morawietz G et al (2004) Revised guides for organ sampling and trimming in rats and mice—part 2. A joint publication of the RITA and NACAD groups. Exp Toxicol Pathol 55:413–431

    Article  PubMed  Google Scholar 

  25. Klopfleisch R (2013) Multiparametric and semiquantitative scoring systems for the evaluation of mouse model histopathology—a systematic review. BMC Vet Res 9:123

    Article  PubMed  PubMed Central  Google Scholar 

  26. Leblanc AK, Mazcko CN (2020) Improving human cancer therapy through the evaluation of pet dogs. Nat Rev Cancer 20:727–742

    Article  CAS  PubMed  Google Scholar 

  27. Leroy BE, Northrup N (2009) Prostate cancer in dogs: comparative and clinical aspects. Vet J 180:149–162

    Article  PubMed  Google Scholar 

  28. Liu D, Xiong H, Ellis AE et al (2015) Canine spontaneous head and neck squamous cell carcinomas represent their human counterparts at the molecular level. PLoS Genet 11:e1005277

    Article  PubMed  PubMed Central  Google Scholar 

  29. London CA, Gardner H, Zhao S et al (2023) Leading the pack: best practices in comparative canine cancer genomics to inform human oncology. Vet Comp Oncol 21:565–577

    Article  PubMed  Google Scholar 

  30. McInnes EF (2011) Background lesions in laboratory animals. Elsevier, UK

    Google Scholar 

  31. Megquier K, Turner-Maier J, Swofford R et al (2019) Comparative genomics reveals shared mutational landscape in canine hemangiosarcoma and human angiosarcoma. Mol Cancer Res 17:2410–2421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Meuten DJ (2020) Tumors in domestic animals. John Wiley & Sons

    Google Scholar 

  33. Meyerholz DK, Beck AP (2018) Principles and approaches for reproducible scoring of tissue stains in research. Lab Invest 98:844–855

    Article  PubMed  Google Scholar 

  34. Mochizuki H, Breen M (2015) Comparative aspects of BRAF mutations in canine cancers. Vet Sci 2:231–245

    Article  PubMed  PubMed Central  Google Scholar 

  35. Mohr U (2013) International classification of rodent tumors. The mouse. Springer Science & Business Media

    Google Scholar 

  36. Morawietz G, Ruehl-Fehlert C, Kittel B et al (2004) Revised guides for organ sampling and trimming in rats and mice—part 3. A joint publication of the RITA and NACAD groups. Exp Toxicol Pathol 55:433–449

    Article  PubMed  Google Scholar 

  37. Moulton JE, Von Tscharner C, Schneider R (1981) Classification of lung carcinomas in the dog and cat. Vet Pathol 18:513–528

    Article  CAS  PubMed  Google Scholar 

  38. Nolte T, Brander-Weber P, Dangler C et al (2016) Nonproliferative and proliferative lesions of the gastrointestinal tract, pancreas and salivary glands of the rat and mouse. J Toxicol Pathol 29:1s–125s

    Article  PubMed  PubMed Central  Google Scholar 

  39. Oliveira MT, Campos M, Lamego L et al (2020) Canine and feline cutaneous mast cell tumor: a comprehensive review of treatments and outcomes. Top Companion Anim Med 41:100472

    Article  PubMed  Google Scholar 

  40. Palmieri C, Grieco V (2015) Proposal of Gleason-like grading system of canine prostate carcinoma in veterinary pathology practice. Res Vet Sci 103:11–15

    Article  PubMed  Google Scholar 

  41. Pinello KC, Queiroga F, de Matos A et al (2020) The global initiative for veterinary cancer surveillance (GIVCS): report of the first meeting and future perspectives. Vet Comp Oncol 18:141–142

    Article  PubMed  Google Scholar 

  42. Rahman MM, Lai YC, Husna AA et al (2020) Transcriptome analysis of dog oral melanoma and its oncogenic analogy with human melanoma. Oncol Rep 43:16–30

    CAS  PubMed  Google Scholar 

  43. Ruehl-Fehlert C, Kittel B, Morawietz G et al (2003) Revised guides for organ sampling and trimming in rats and mice—part 1. Exp Toxicol Pathol 55:91–106

    Article  PubMed  Google Scholar 

  44. Scudamore CL (2014) A practical guide to the histology of the mouse. John Wiley & Sons

    Book  Google Scholar 

  45. Scudamore CL, Soilleux EJ, Karp NA et al (2016) Recommendations for minimum information for publication of experimental pathology data: MINPEPA guidelines. J Pathol 238:359–367

    Article  PubMed  Google Scholar 

  46. Simpson S, Dunning MD, de Brot S et al (2017) Comparative review of human and canine osteosarcoma: morphology, epidemiology, prognosis, treatment and genetics. Acta Vet Scand 59:71

    Article  PubMed  PubMed Central  Google Scholar 

  47. Sommerville L, Howard J, Evans S et al (2022) Comparative gene expression study highlights molecular similarities between triple negative breast cancer tumours and feline mammary carcinomas. Vet Comp Oncol 20:535–538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Steiger K, Ballke S, Yen HY et al (2019) Histopathological research laboratories in translational research : conception and integration into the infrastructure of pathological institutes. Pathologe 40:172–178

    Article  CAS  PubMed  Google Scholar 

  49. Sundberg JP, Vogel P, Ward JM (2022) Pathology of genetically engineered and other mutant mice

    Google Scholar 

  50. Thoolen B, Maronpot RR, Harada T et al (2010) Proliferative and nonproliferative lesions of the rat and mouse hepatobiliary system. Toxicol Pathol 38:5s–81s

    Article  PubMed  Google Scholar 

  51. Torres de la Riva G, Hart BL, Farver TB et al (2013) Neutering dogs: effects on joint disorders and cancers in golden retrievers. PLoS ONE 8:e55937

    Article  PubMed  PubMed Central  Google Scholar 

  52. Treuting PM, Dintzis S, Montine KS (2017) Comparative anatomy and histology: a mouse, rat, and human atlas. Academic Press

    Google Scholar 

  53. Valli VE (2002) Histological classification of hematopoietic tumors of domestic animals

    Google Scholar 

  54. Van Den Top JG, Ensink JM, Gröne A et al (2010) Penile and preputial tumours in the horse: literature review and proposal of a standardised approach. Equine Vet J 42:746–757

    Article  CAS  PubMed  Google Scholar 

  55. Vollmer E, Schultz H, Stellmacher F et al (2010) Tumors in the lung—morphologic features and the challenge of integrating biomarker signatures into diagnostics. Rom J Morphol Embryol 51:607–614

    CAS  PubMed  Google Scholar 

  56. Ward JM, Schofield PN, Sundberg JP (2017) Reproducibility of histopathological findings in experimental pathology of the mouse: a sorry tail. Lab Animal 46:146–151

    Article  PubMed  PubMed Central  Google Scholar 

  57. Webb JL, Burns RE, Brown HM et al (2009) Squamous cell carcinoma. Compend Contin Educ Vet 31:E9

    PubMed  Google Scholar 

  58. Webster JD, Miller MA, Dusold D et al (2009) Effects of prolonged formalin fixation on diagnostic immunohistochemistry in domestic animals. J Histochem Cytochem 57:753–761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Willmann M, Hadzijusufovic E, Hermine O et al (2019) Comparative oncology: the paradigmatic example of canine and human mast cell neoplasms. Vet Comp Oncol 17:1–10

    Article  CAS  PubMed  Google Scholar 

  60. Willmann M, Müllauer L, Guija De Arespacochaga A et al (2009) Pax5 immunostaining in paraffin-embedded sections of canine non-Hodgkin lymphoma: a novel canine pan pre-B- and B‑cell marker. Vet Immunol Immunopathol 128:359–365

    Article  CAS  PubMed  Google Scholar 

  61. Wong K, Abascal F, Ludwig L et al (2023) Cross-species oncogenomics offers insight into human muscle-invasive bladder cancer. Genome Biol 24:191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Wong K, Ludwig L, Krijgsman O et al (2021) Comparison of the oncogenomic landscape of canine and feline hemangiosarcoma shows novel parallels with human angiosarcoma. Dis Model Mech. https://doi.org/10.1242/dmm.049044

    Article  PubMed  PubMed Central  Google Scholar 

  63. Wypij J, Fan TM, De Lorimier L (2006) Primary hepatic and biliary tract tumors in dogs and cats: an overview. Vet Med 101:384

    Google Scholar 

  64. Yan W et al (2011) Squamous cell carcinoma—similarities and differences among anatomical sites. Am J Cancer Res 1:275–300

    PubMed  Google Scholar 

Download references

Funding

Wir bedanken uns bei unseren Drittmittelgebern (DFG [SFB1371, SFB1366, TRR187] sowie den N3CRs [Crack-it-Challenge]).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katja Steiger.

Ethics declarations

Interessenkonflikt

T. Groll, H. Aupperle-Lellbach, C. Mogler und K. Steiger geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autor/-innen keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Additional information

Schwerpunktherausgeberin

Carolin Mogler, München

Redaktion

Schwerpunktherausgeberin: Carolin Mogler, München

Hinweis des Verlags

Der Verlag bleibt in Hinblick auf geografische Zuordnungen und Gebietsbezeichnungen in veröffentlichten Karten und Institutsadressen neutral.

figure qr

QR-Code scannen & Beitrag online lesen

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Groll, T., Aupperle-Lellbach, H., Mogler, C. et al. Vergleichende Pathologie in der onkologischen Forschung. Pathologie 45, 190–197 (2024). https://doi.org/10.1007/s00292-024-01327-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00292-024-01327-4

Schlüsselwörter

Keywords

Navigation