Bei Patienten mit einem kolorektalen Karzinom (KRK) ist die BRAF-Testung neben der RAS-Testung fester Bestandteil der leitliniengerechten molekularbiologischen Diagnostik vor Einleitung der Erstlinientherapie. Ziel dieses Artikels ist es, eine aktuelle Übersicht zur Bedeutung von BRAF als prognostischer und prädiktiver Biomarker zu geben, neue Therapieoptionen für KRK-Patienten mit BRAF-Mutationen aufzuzeigen sowie die derzeitig einsetzbaren Diagnoseverfahren zur BRAF-Testung darzustellen.

Trotz signifikanter Therapiefortschritte gehört das KRK in Europa weiterhin zu den prognostisch ungünstigsten Krebserkrankungen mit jährlich annähernd 250.000 Todesfällen, die Inzidenz liegt bei über 500.000 Neuerkrankungen [1]. Mit fortschreitender molekularpathologischer Charakterisierung und voranschreitender Klassifizierung des KRK in molekulare Subtypen [2] ergeben sich zunehmend mehr Möglichkeiten zum Einsatz zielgerichteter Therapien, wodurch der molekularen Diagnostik ein immer größerer Stellenwert zukommt.

BRAF-Mutationen kommen bei etwa 8–12 % der Patienten mit einem metastasierten KRK (mKRK) vor [3, 4]. Bei über 95 % aller BRAF-Mutationen handelt es sich um BRAF-V600-Mutationen, bei der in Codon 600 (in Exon 15) des BRAF-Gens zumeist eine Substitution von Valin durch Glutaminsäure an Position 1799 erfolgt. Neben dieser häufigsten Mutation, BRAFV600E, treten auch seltenere Mutationen in Codon 600 auf, bei der ein Austausch des Valins an Position 600 durch Lysin (BRAFV600K), Asparaginsäure (BRAFV600D), Methionin (BRAFV600M) oder Arginin (BRAFV600R) erfolgt [5]. Klinisch fällt beim Vergleich der BRAF-V600-Mutation mit den deutlich selteneren BRAF-Mutationen in den Codons 594 und 596 auf, dass erstere häufiger in rechtsseitigen und muzinösen Primärtumoren mit peritonealer Metastasierung gefunden werden. BRAF594/596-Tumoren weisen zudem eine günstigere Prognose auf [3]. Die Ausführungen in den nachfolgenden Kapiteln dieser Arbeit beziehen sich immer auf BRAFV600E-Mutationen beim mKRK, soweit nicht explizit anders beschrieben.

B‑Raf ist eine Schlüsselkinase im (Ras/RAF/MEK-)MAPK-Signalweg, die in die Regulation des Zellwachstums involviert ist. Die mutationsbedingte Veränderung des BRAF-Gens führt zur konstitutiven Aktivierung dieser Proteinkinase, wodurch unkontrollierte Zellteilung auftritt in deren Folge (Neo‑)Angiogenese und Metastasierung zunehmen [6]. Untersuchungen des KRK-Transkriptoms haben zu einer Einteilung des mKRK in 4 Konsensussubtypen („consensus molecular subtypes“, CMS) geführt. KRAS-Mutationen treten überwiegend im epithelialen, „metabolischen“ Subtyp CMS3 auf, der sich durch metabolische Dysregulation auszeichnet und auch teilweise chromosomale Instabilität wie auch Mikrosatelliteninstabilität (MSI-H) aufweist [2, 7]. BRAF-Mutationen hingegen finden sich häufig im MSI-H/Immun-Subtyp CMS1.

BRAF-Mutationen treten nur äußerst selten zusammen mit einer Mutation des RAS-Gens auf, die molekulare Testung auf das Vorliegen dieser Mutationen soll laut aktueller S3-Leitlinie möglichst noch vor Einleitung der Erstlinientherapie erfolgen. Dabei kann die BRAF-Testung am besten gleichzeitig mit dem RAS-Test oder ggf. auch sequenziell nach Ausschluss der RAS-Mutation erfolgen [3].

Onkogene Eigenschaften der BRAF-Mutation

BRAF ist ein onkogener Treiber bei mKRK-Patienten, der beim malignen Melanom schon lange als therapeutische Zielstruktur etabliert ist. [8]. Die mit einer BRAF-Mutation assoziierten serratierten Adenome des Darms weisen molekulare, morphologische, klinische und epidemiologische Charakteristika auf, die sich von denen der Adenome unterscheiden und die sich im Zuge einer „klassischen Adenom-Karzinom-Sequenz“ basierend auf Mutationen des APC-Gens entwickeln [9, 10]. Bei der BRAF-getriebenen Ausbildung von „sessilen serratierten Adenomen“ (SSA) kommt es zu Störungen der Apoptose der Kryptenepithelien gefolgt von einer Seneszenz mit epigenetischen Promotor(CpG)-Methylierungen und konsekutiv verminderter Expression verschiedener Gene (zum Beispiel hMLH1, MGMT, p16) [3, 9]. Bei SSA als Tumorvorstufe und Vorläuferläsionen handelt es sich um flache, kaum aus dem Schleimhautniveau aufragende Polypen, die zumeist im rechtsseitigen Kolon auftreten und auch endoskopisch nur schwer zu erkennen sind [3, 9]. Patienten mit großen serratierten Adenomen weisen ein erhöhtes Risiko der kolorektalen Karzinomentstehung auf. Bei Frauen mit SSA ist das Risiko gegenüber Männern um den Faktor 5 erhöht [3].

Klar negativer prognostischer Faktor beim KRK

Beim mKRK gilt erhöhtes Alter ebenso als negativ prognostisches Kennzeichen wie eine Lage des Tumors proximal der linken Flexur [11]. In einer großen retrospektiven Fallserie wurde der Einfluss von BRAF-Mutationen und MSI‑H auf die metastatische Ausbreitung und Prognose von mKRK untersucht: BRAF-mutante Tumoren und hier wiederum die V600E-Mutation sind gegenüber dem BRAF-Wildtyp mit einer signifikant schlechteren Überlebensprognose assoziiert (Median 10,4 versus 34,7 Monate; Hazard Ratio [HR] = 10,66, p < 0,001) wie auch mit einer höheren Rate an peritonealen Metastasen und distanten Lymphknotenmetastasen [12]. Die prognostisch äußerst negative Auswirkung von BRAFV600 wurde auch bei randomisierten kontrollierten Studien übereinstimmend berichtet [4, 13, 14]. Eine ausführliche Diskussion des prognostischen Einflusses von BRAF-Mutationen in Abhängigkeit von der Mikrosatellitenstabilität bzw. -instabilität als weiterem Biomarker findet sich in 2 aktuellen Übersichtsarbeiten [6, 15]. MSI‑H tritt, mit Ausnahme des hereditären nicht-Polyposis-assoziierten kolorektalen Karzinoms (HNPCC), mit einer geschätzten Häufigkeit von nur 4–8 % bei mKRK-Patienten auf [4]. Bei gleichzeitigem Auftreten von BRAF-Mutationen und MSI‑H – die Häufigkeit liegt reziprok jeweils bei ungefähr einem Drittel – handelt es sich um sporadische Defekte der DNA-Mismatch-Reparatur (dMMR) [3, 4]. MSI-H-Patienten haben insgesamt eine bessere Prognose als Patienten mit Mikrosatellitenstabilität (MSS)[16]. Trotz insgesamt kleiner Fallzahlen deutet die derzeitig verfügbare klinische Evidenz darauf hin, dass mKRK-Patienten mit einer BRAFV600E-Mutation und MSI‑H eine insgesamt bessere Prognose haben als Patienten mit einer BRAFV600E-Mutation und MSS-Befundung, wobei in der metastasierten Situation die Kombination BRAFV600E und MSS zu überwiegen und somit die schlechte Prognose der BRAF-Mutation führend zu sein scheint [6, 13, 17,18,19,20].

Prädiktiver Wert bezüglich bisheriger konventioneller Therapien unklar

Vor dem Hintergrund eines sich mutuell nahezu ausschließenden Auftretens von BRAF- und RAS-Mutationen [21] und der nachgewiesen negativen prädiktiven Bedeutung von RAS-Mutationen für den Einsatz von Anti-EGFR-Therapien stellt sich auch für BRAF-Mutationen die Frage der prädiktiven Relevanz bezüglich des Einsatzes der beiden monoklonalen Antikörper Cetuximab und Panitumumab. Beide sind beim KRK ausschließlich für den Einsatz bei Patienten mit RAS-Wildtyp zugelassen. Für den Einsatz von Anti-EGFR-Therapien bei Patienten mit einer BRAF-Mutation liegen nur begrenzte Daten aus Subgruppenanalysen größerer konfirmatorischer Studien (Tab. 1) sowie rein retrospektive, aus klinischen Praxisdaten erhobene Fallserien vor [22, 23].

Tab. 1 Studien und retrospektive Analysen zur Wertigkeit von BRAF als prädiktiver Marker beim Einsatz von Anti-EGFR-Therapien (A) bzw. Anti-VEGF-Therapien (B) beim BRAF-mutierten metatstasierten kolorektalen Karzinom (mKRK)

Einen klinischen Benefit haben 2 sich in Teilen überlappende Metaanalysen dieser Daten der Anti-EGFR-Antikörpertherapie bei RAS-plus BRAF-Wildtyp-Patienten bestätigen können. Bei RAS-Wildtyp Patienten mit einer BRAF-Mutation zeigten sich in der Gesamtheit der Daten allerdings nur bedingte, nicht signifikante klinische Vorteile beim progressionsfreien Überleben wie auch beim Gesamtüberleben [24, 25]. Die derzeitige Datenlage wird auch in dem Sinne kontrovers diskutiert, dass diese Daten eine Exklusion von Anti-EGFR-Antikörpern für die Patientengruppe mit BRAFV600E-Mutation gleichfalls nicht rechtfertigen. Die Daten aus der deutschen, randomisierten Phase-II-Studie VOLFI zum Vergleich von Panitumumab plus Chemotherapie versus alleiniger Chemotherapie in der Erstlinie zeigten, dass die Hinzugabe von Panitumumab zur Chemotherapie die Ansprechrate (ORR) bei den 14 Patienten mit BRAFV600E-mutierten Tumoren tendenziell erhöhte (Odds Ratio 14,93; 95 %-KI 1,03–200,00) [26].

Für die im klinischen Alltag des mKRK bedeutsame und unabhängig vom RAS-Status einsetzbare Anti-VEGF-Therapie – wie die Anti-EGFR-Therapie in Kombination mit (in der Erstlinie zumeist) Oxaliplatin-haltiger beziehungsweise (in der Zweitlinie zumeist) Irinotecan-haltiger Chemotherapie gegeben – stehen bisher keine bzw. nur indirekte Vergleiche zur Verfügung, sodass der prädiktive Wert einer BRAF-Testung hier unklar ist. Die Ergebnisse einer kleinen Phase-II [27] sowie Subgruppenanalysen zweier großer Phase-III-Studien [28, 29] lassen in der Gesamtschau keine eindeutige Beurteilung der Bedeutung einer intensivierten Chemotherapie (FOLFOXIRI) bei BRAF-mutierten Patienten zu. Eine Metaanalyse von 5 randomisierten Studien mit heterogenen Fallzahlen (n = 70–679) und unterschiedlichen Fragestellungen kam jüngst zu dem Ergebnis, dass bei BRAF-mutierten Patienten – bei weiterhin insgesamt kleinen Fallzahlen – in der Erstlinie eher kein gesteigerter Nutzen durch die intensivierte Kombinationstherapie besteht [30]. Eine im Herbst 2020 vorgestellte Metaanalyse der ARCAD-Studiengruppe mit gepoolten Daten zweier Studien, die den Ansatz Chemotherapie plus Anti-EGFR- bzw. plus Anti-VEGF-Therapie in der Erstlinientherapie des mKRK direkt verglichen, konnte für die Subgruppe der BRAF-mutierten Patienten (n = 138) keinen relevanten Unterschied im Gesamtüberleben aufzeigen zwischen Bevacizumab-basierter Behandlung und Cetuximab-basierter Therapie (HR = 1,01, 95 %-KI 0,69–1,48) [31]. Der Wert der Anti-VEGF-Therapie mit Bevacizumab an sich wie auch die prädiktive Rolle von BRAF für die Einleitung einer Bevacizumab-basierten Therapie erfordern noch weitergehende Untersuchungen (Tab. 1).

Obwohl zielgerichtete Tyrosinkinaseinhibitoren in der klinischen Routine seit 2011 mit viel Erfolg beim BRAFV600-mutierten Melanom eingesetzt werden, zeigte sich das BRAF-mutierte mKRK wenig sensitiv bei monotherapeutischem Einsatz [32, 33]. Die Ursache hierfür scheinen KRK-spezifische Resistenzmechanismen in der MAPK-Signalkaskade zu sein. In-vitro-Studien belegten eine Unterdrückung des zwischen der ERK-Kinase und dem EGFR bestehenden negativen Feedbackloops unter BRAF-Monotherapie bei insgesamt hoher EGFR-Expression und möglicherweise stärkerer Aktivierung des Rezeptors durch seine Liganden (Abb. 1; [33, 34]). Dies resultiert in einer Reaktivierung des EGFR-Signalwegs, z. B. unter Umgehung des mutierten BRAF-Proteins über CRAF. Die zusätzliche Inhibierung des EGFR-Signalwegs durch gleichzeitige Gabe einer gegen EGFR-gerichteten Therapie zusätzlich zur BRAF-Blockade erscheint daher wichtig, um die mehrgleisigen Resistenzmechanismen innerhalb des MAPK-Signalwegs zu blockieren [33, 35].

Abb. 1
figure 1

Der MAPK-Signalweg. a Signalverstärkung bei Vorliegen einer aktivierenden BRAF-Mutation. b Inhibition des durch Mutation aktivierten BRAF mit resultierender Unterdrückung des ERK-vermittelten negativen Feedbackloops und einer Reaktivierung des MAPK-Signalweges über CRAF. c Vermeidung von Resistenzmechanismen: Wirkmechanismus der kombinierten BRAF- und EGFR-Blockade. BRAF „rapidly accelerated fibrosarcoma isoform B“, CRAF „rapidly accelerated fibrosarcoma isoform C“, EGFR „epidermal growth factor receptor“, ERK „extracellular signal-regulated kinase“, MAPK mitogenaktivierte Proteinkinase, MEK MAPK/ERK-Kinase, RAS Rat-sarcoma-Protoonkogen. (Abbildung modifiziert nach Taieb et al. [15], CC BY-Lizenz)

Therapieoptionen beim BRAF-mutierten mKRK

Die Therapie des mKRK ist bisher in der Erst- wie Zweitlinie generell durch Verwendung von Kombinationschemotherapien geprägt und, wie im Kapitel zuvor dargestellt, zumeist – bei linksseitigen RAS-Wildtyp-Tumoren – in Verbindung mit einer EGFR-Antikörpertherapie [3, 4]Footnote 1. Die gültigen Therapieempfehlungen beim mKRK räumen dem Allgemeinzustand der häufig älteren Patienten hinsichtlich der Therapieentscheidung großen Raum ein und unterscheiden – bei den Patienten, die fit genug für eine systemische Therapie sind – zwischen den Behandlungszielen „Zytoreduktion“, mit dem Ziel einer Reduktion der Tumormasse, sowie „Krankheitskontrolle“ mit dem Ziel des Herauszögerns weiterer Progression.

Erstlinientherapie beim BRAF-mutierten mKRK

Die Kombination eines Antimetaboliten (5-Fluorouracil plus Leucovorin als Folinsäurederivat) mit einer die DNA-Replikation störenden Platinverbindung (Oxaliplatin) sowie einem Topoisomerase-I-Inhibitor (Irinotecan) und dem Angiogenesehemmer (anti-VEGF) Bevacizumab in BRAF-mutierten mKRK-Patienten mit gutem Allgemeinzustand ist derzeit europäischer Leitlinienstandard für diese Subentität [4]. Hinsichtlich der Evidenzniveaus in der BRAF-mutierten Subgruppe ist allerdings zu beachten, dass die Leitlinienempfehlung nur auf einer sehr geringen Patientenzahl (N = 28) aus der TRIBE-Studie beruht und somit mit entsprechenden Unsicherheiten behaftet ist [28]. In der BRAF-Subgruppe dieser Phase-III-Studie betrug das Gesamtüberleben unter FOLFOXIRI plus Bevacizumab 19 Monate, 56 % der Patienten sprachen auf die Therapie an. Jedoch wurde kein signifikanter Unterschied gegenüber der Vergleichstherapie aus FOLFIRI plus Bevacizumab erreicht (Tab. 1; [28]). Dieser Erstlinienstandard ist momentan Gegenstand kontroverser Diskussion. Eine kürzlich publizierte Metaanalyse aus 5 randomisierten Studien zu FOLFOXIRI plus Bevacizumab vs. Doublet-Chemotherapie plus Bevacizumab ergab bei BRAF-mutierten Tumoren einen nicht signifikanten Trend zugunsten des weniger intensiven Regimes (n = 115; HR: 1,12, 95 %-KI: 0, 75–1,68) [30].

Aufgrund der schlechten Prognose von mKRK-Patienten mit einer BRAFV600E-Mutation kommt dem Konzept, die Erstlinienbehandlung beim mKRK möglichst aggressiv unter Verwendung fast des gesamten Arsenals an Therapiemodalitäten anzugehen, auf Basis der aktuellen Empfehlungen klinische Bedeutung zu – insbesondere, wenn eine Zytoreduktion angestrebt wird. Allerdings ist unklar, in welchem Umfang in Deutschland Patienten diese intensivierte und mit entsprechenden Nebenwirkungen behaftete Erstlinientherapie erhalten.

Wie zuvor geschildert ist darüber hinaus die Frage des Einsatzes der chemotherapiekombinierten Anti-EGFR-Therapie bei BRAF-mutierten Tumoren auf Basis der nicht eindeutigen Ergebnisse zweier Metaanalysen ebenfalls Gegenstand einer kontroversen Debatte [24, 25].

Neue chemotherapiefreie, zielgerichtete Optionen in der Zweit- bzw. Drittlinientherapie

Aufgrund der bis dato limitierten Therapieoptionen nach erfolgter Erstlinientherapie konnten sich in den Leitlinien für die Zweit‑/Drittlinientherapie des BRAF-mutierten mKRK bislang keine klaren Empfehlungen herausbilden [3, 4]. Die deutsche S3-Leitlinie von 2019 schrieb hierzu: „individuelle (derzeitig) nicht zugelassene Therapieansätze, z.B. mit einem BRAF-inhibitor, MEK-Inhibitor und Anti-EGFR-Antikörper oder wenn möglich die Behandlung im Rahmen einer klinischen Studie (sind) in Betracht zu ziehen“; wobei die hier genannten Therapieoptionen bislang keine Zulassung für diese Indikation besaßen.

Mit der im Juni 2020 erfolgten EU-Zulassung der Kombinationstherapie des BRAF-Inhibitors Encorafenib und des Anti-EGFR-Antikörpers Cetuximab steht eine chemotherapiefreie, zielgerichtete Doppelblockade nun für die Routineversorgung zur Verfügung. Die Zulassung der Kombination gilt für Patienten mit einem mKRK mit BRAFV600E-Mutation, die zuvor eine systemische Vortherapie erhalten haben [43].

Die der Zulassung zugrunde liegende Phase-III-Studie BEACON CRC untersuchte die Dreifachblockade aus Encorafenib und Cetuximab plus dem MEK-Inhibitor Binimetinib und der Zweifachblockade aus Encorafenib und Cetuximab im Vergleich zu einer Kontrolltherapie aus Irinotecan-basierter Chemotherapie plus Cetuximab in Patienten mit BRAFV600E-mutiertem mKRK, die zuvor 1 oder 2 palliative Therapielinien erhalten hatten (Abb. 2; [44]). Primäre Endpunkte waren Tumoransprechen (ORR) und Gesamtüberleben (OS) der Dreifachblockade vs. Kontrolltherapie. Die Studie war auf den Endpunkt OS (für Therapiegruppe „Zweifachblockade“ versus Kontrollgruppe) hin gepowert. Weitere sekundäre Endpunkte (OS, ORR und progressionsfreie Überleben [PFS] – jeweils Zweifachblockade vs. Kontrolltherapie sowie das PFS der Dreifachblockade vs. Kontrolle) waren ebenfalls alpha-kontrolliert und somit von konfirmatorischer Relevanz. Insgesamt wurden 665 Patienten im Verhältnis 1:1:1 in die 3 Therapiearme randomisiert.

Abb. 2
figure 2

Design der Phase-III-Studie BEACON CRC bei Patienten mit einem vorbehandeltem metastasierten kolerektalen Karzinom (mKRK) und BRAFV600E-Mutation. BID zweimal täglich, BM Biomarker, FOLFIRI Folsäure + Fluoruracil + Irinotecan, HR Hazard Ratio, ORR Gesamtansprechrate, OS Gesamtüberleben, PD Progression, PFS progressionsfreies Überleben, PK Pharmakokinetik, Q1W wöchentlich, QD einmal täglich, R Randomisierung, ° Grad

Die primären Endpunkte der Studie wurden erreicht. Die Kombination aus Encorafenib, Cetuximab und Binimetinib zeigte in der primären Analyse (medianes OS-Follow-up 7,8 Monate) eine ORR von 26 % [95 %-KI 18–35] vs. 2 % [95 %-KI < 1–7] unter der Kontrolltherapie (p < 0,001). Das mediane OS der Dreifachblockade gegenüber der Kontrolle betrug 9,0 vs. 5,4 Monate (HR [95 %-KI]: 0,52 [0, 39–0,70]; p < 0,001) [44]. Für den alpha-kontrollierten Vergleich von OS der Zweifachblockade vs. Kontrolltherapie konnte für Encorafenib plus Cetuximab eine Verlängerung des medianen OS um 3 Monate (8,4 vs. 5,4 Monate; HR [95 %-KI]: 0,60 [0, 45–0,79], p < 0,001) gezeigt werden; die ORR betrug 20 % (95 %-KI: 13–29) vs. 2 % (95 %-KI: < 1–7; p < 0,001).

Die Verträglichkeit der Zweifachblockade stellte sich gegenüber der Dreifachblockade sowie gegenüber der Kontrolle etwas günstiger dar (Abb. 2). Das Sicherheitsprofil der Kombination aus Encorafenib und Cetuximab war gut handhabbar und zeigte die erwartbaren klassentypischen Ereignisse. Die am häufigsten beobachteten unerwünschten Ereignisse (UE) waren: erhöhtes Kreatinin (50 %), Übelkeit (34 %), Diarrhoe (33 %), verringertes Hämoglobin (32 %), Fatigue (30 %), akneiforme Dermatitis (29 %) und verminderter Appetit (27 %) [44].

Aufgrund der vergleichbaren Wirksamkeitsergebnisse der Dreifach- gegenüber der Zweifachblockade bei etwas günstiger Verträglichkeit von Encorafenib + Cetuximab sprach die Europäische Arzneimittelbehörde EMA im Juni 2020 die Zulassung für die Zweifachkombination aus [43].

Eine aktuelle Updateanalyse nach einem medianen Follow-up von 12,8 Monaten bestätigte die oben genannten Ergebnisse bei weitgehend unverändertem Verträglichkeitsprofil [45]. Das mediane Gesamtüberleben betrug hierbei 9,3 Monate (95 %-KI: 8,2–10,8) unter Dreifachblockade, 9,3 Monate bei Behandlung mit der nun neu zugelassenen Zweifachblockade aus Encorafenib und Cetuximab (95 %-KI: 8,0–11,3) sowie 5,9 Monate (95 %-KI: 5,1–7,1) in der Kontrollgruppe.

Die zielgerichtete Dreifachblockade aus Encorafenib, Cetuximab und Binimetinib wird derzeit im Rahmen der zweistufigen ANCHOR CRC Phase-II-Studie als Erstlinientherapie weiter untersucht (Abb. 3).

Abb. 3
figure 3

Design der Phase-II-Studie ANCHOR bei Patienten mit einem nicht vorbehandeltem metastasierten kolorektalen Karzinom (mKRK) und BRAFV600E-Mutation. ORR Gesamtansprechrate, OS Gesamtüberleben, PD Progression

BRAF-Diagnostik

Aus der zuvor beschriebenen klinischen Situation ergibt sich die Notwendigkeit einer Testung auf das Vorliegen von RAS- und BRAF-Mutationen beim mKRK, um eine an den Mutationsstatus angepasste Therapiesequenzplanung – im Fall BRAFV600E-mutierter Patienten unter Berücksichtigung der neuen Therapieoption Encorafenib plus Cetuximab – vornehmen zu können.

Die Leitlinien empfehlen eine solche Diagnostik vor der Einleitung der Erstlinientherapie des mKRK bzw. bereits bei der Erstdiagnose des KRK, um ggf. zusammen mit einer dMMR-Testung das Vorliegen eines Lynch-Syndroms ausschließen zu können [3, 4]. Solche hereditären KRK ohne Polyposis (HNPCC) stellen wie BRAF-mutierte Tumore einen biologisch unterschiedlichen Subtyp des KRK dar. Bei Vorliegen einer BRAF-Mutation in einem dMMR/MSI-H-Tumor kann ein Lynch-Syndrom weitestgehend ausgeschlossen werden. Die zeitgerechte Bestimmung des BRAF-Mutationsstatus ist somit von diagnostischer und insbesondere auch therapeutischer Relevanz (verzögerungsfreier Start der Erstlinie; Planung der Therapiesequenz) und unterstützt zudem bei der diagnostisch wichtigen Unterscheidung, ob die Defekte der Mismatchreparatur somatischer oder genetischer Natur sind [46,47,48]. Die Annahme eines sporadischen Tumors und somit der Ausschluss von HNPCC/Lynch-Syndrom kann durch Analyse der MLH1-Promotormethylierung unterstützt werden, da das Vorliegen einer solchen Methylierung die Diagnostik eines sporadischen MSI-H-Status zusätzlich absichert (Abb. 4). Die BRAF-Analytik kann entweder zeitgleich zur RAS-Analytik oder stufendiagnostisch nach Ausschluss einer RAS-Mutation erfolgen. Heutzutage empfiehlt sich allerdings erstere Vorgehensweise mittels entsprechender Genpaneldiagnostik unter Verwendung von fokussiertem Next Generation Sequencing (NGS).

Abb. 4
figure 4

Diagnostischer Algorithmus MSI‑H/MSS – BRAF – MLH1-Promotormethylierung (bei/nach Ausschluss einer RAS-Mutation [3]; prognostische Angaben gemäß Lochhead et al. [17]). BRAF „rapidly accelerated fibrosarcoma isoform B“, MLH1, MSH2, MSH6, PMS2 DNA-Reparaturenzyme/-Komplexe, MSI‑H Mikrosatelliteninstabilität, MSS Mikrosatellitenstabilität, wt WildTyp

Probenvorbereitung

Im Rahmen der klinischen Befundklärung werden Proben zumeist im Rahmen einer Darmspiegelung oder der operativen Entfernung des Primärtumors erhalten. Nach Fixierung in 10 % neutral gepuffertem Formalin (4 % Formaldehyd) für 24–48 h und Einbettung in Paraffin sind die Proben nach Extraktion der DNA für die unter Abb. 4 aufgeführten Untersuchungen sehr gut geeignet. Für die molekulare Bestimmung des MSI-H-Status sollten auch gesunde, tumorferne Gewebeanteile asserviert und untersucht werden [4]. Im Falle von Gewebeproben mit einem geringen prozentualen Tumorzellanteil wird zur Anreicherung der Tumorzellen eine Makrodissektion vor der DNA-Extraktion angeraten.

Molekularpathologische, DNA-analytische Verfahren

Zur Bestimmung des BRAFV600E-Mutationsstatus stehen unterschiedliche Testmethoden mit verschiedener Spezifität und Sensitivität zur Verfügung. Mit klassischen Testverfahren (Tab. 2) wie der Sanger-Sequenzierung lassen sich 99 % aller Mutationen erkennen mit einer Spezifität von 100 %. Es muss jedoch darauf geachtet werden, dass ein Tumorzellanteil von 20–30 % nicht unterschritten werden darf. Der Nachweis der BRAFV600E-Mutation mittels High-Resolution-Melting(HRM)-Analyse oder Pyrosequenzierung ist sensitiver als die Sanger-Sequenzierung, sodass ein Tumorzellgehalt von etwa 10–15 % (5 % Sensitivität) ausreichend erscheint [49, 50]. Ähnliche Sensitivitäten weisen auch kommerzielle Tests wie ThxID-BRAF-Kit® (bioMérieux, Marcy-l’Étoile, Frankreich;V600E sowie V600K), cobas 4800® BRAF Mutation Test (F. Hoffmann-La Roche AG, Basel, Schweiz; nur V600E) oder Idylla™ BRAF Mutation Test (Biocartis NV, Mechelen, Belgien) auf (Tab. 3; [51,52,53]).

Tab. 2 Charakteristika klassischer und neuer DNA-analytischer Verfahren für BRAF-Mutationen
Tab. 3 Charakteristika kommerzieller Testverfahren zur Analyse von BRAF-Mutationen

In den letzten Jahren haben sich in der molekularen Diagnostik verstärkt NGS-Verfahren durchgesetzt, mit denen sich eine Auswahl von diagnose- und therapierelevanten Genen/Genabschnitten („targeted NGS“) simultan mit hoher Sensitivität und Spezifität nachweisen lassen. Daher wird der Nachweis einer BRAF-Mutation beim KRK häufig nicht mehr als isolierter Einzelnachweis durchgeführt, sondern eingebettet in den parallelen Nachweis anderer molekularer Alterationen, wie zum Beispiel KRAS und NRAS. Die Sensitivität der NGS-basierten Verfahren ist grundsätzlich sehr hoch (etwa 1 %), wird aber durch Artefakte, die im Rahmen der Formalinfixierung entstehen, eingeschränkt. In vielen Laboren wird deshalb ein Schwellenwert von 5 % Varianten-Allelfrequenz (VAF) vorgegeben, der unter bestimmten Bedingungen gegebenenfalls unterschritten werden kann [49, 50]. Als NGS-Plattformen stehen heute primär ThermoFisher Scientific (Waltham, USA) und Illumina (San Diego, USA) zur Verfügung. Mit beiden Plattformen lassen sich zahlreiche kommerzielle oder eigene Genpanel einsetzen, wobei sowohl amplikonbasierte Verfahren (Multiplex-PCR) als auch Hybrid-Capture-Verfahren zur Anreicherung der gewählten Zielregionen infrage kommen. Für die Auswertung der NGS-Daten stehen zahlreiche bioinformatische Programme zur Verfügung, die allerdings durch in der molekularen Diagnostik sehr erfahrene Wissenschaftler/Ärzte verwendet werden sollten.

Im Rahmen der BEACON-CRC-Studie, die in insgesamt 221 Zentren in 28 Ländern durchgeführt wurde (davon 111 Zentren in Europa), ergab die Auswertung der für die BRAF-Bestimmung von 510 Proben eingesetzten Verfahren folgendes Bild: In 48,8 % der Untersuchungen wurden für die BRAF-Testung noch immer Einzelgennachweise geführt. Proteinbasierte Verfahren (Immunhistologie) kamen in 0,7 % der Analysen zum Einsatz. Die Mehrheit der BRAF-Testungen wurde allerdings zusammen mit dem Nachweis weiterer Genveränderungen (z. B. als fokussierte, amplikonbasierte NGS) durchgeführt (50,5 %). Die zwischen lokaler und zentraler Testung beobachtete Abweichung zeigt dabei die Relevanz einer Standardisierung von diagnostischen Verfahren, insbesondere im Hinblick auf die zunehmende Bedeutung zielgerichteter Therapieansätze. Eine eindeutige Bestätigung der lokal nachgewiesenen BRAFV600E-Mutation erfolgte lediglich in 90,7 %. Diese Diskrepanz basierte bemerkenswerterweise überwiegend auf einer ungenügenden Anzahl Tumorzellen in den Proben – aller Wahrscheinlichkeit nach aufgrund der Tatsache, dass die BRAF-mutierten Tumore grundsätzlich mit einem muzinösen Adenokarzinom assoziiert sind, welches weniger Tumorzellen enthält. Bei 1,6 % der zentralen Wiederholungstests wurde das lokale Ergebnis eindeutig negiert. Diese Möglichkeit einer Diskonkordanz zwischen lokaler und zentraler Testung in Betracht ziehend erlaubte das Studienprotokoll zwar den Einschluss von Patienten basierend auf einem lokalen BRAFV600E-Mutationsnachweis im Rahmen des molekularen Prescreenings, forderte als Einschlusskriterium aber zudem und binnen 30 Tagen nach erstmaligem Erhalt der Studienmedikation die zentrale Bestätigung. Nachdem die Studie die präspezifizierte Anzahl abweichender Testergebnisse erreicht hatte, wurde das Vorliegen des zentralen Nachweises durch den in den USA als Companion Diagnostic entwickelten Assay zur Voraussetzung für die Aufnahme aller weiterer Patienten.

Zwischen der Europäischen Union (EU) und den USA bestehen Unterschiede in der Regulierung von In-vitro-Diagnostika (IVD). Solche Tests unterliegen in den USA einer zentralen Zulassung (Premarket Approval) durch die Food and Drug Administration (FDA), während in der EU eine dezentrale Zulassungsphilosophie vorherrscht, bei der die Hersteller die Konformität ihres Tests durch eine „Benannte Stelle“ („notified body“) bewerten lassen können und danach die sog. CE-Kennzeichnung („Conformité Européene“) selbst auf dem Produkt bzw. Test aufbringenFootnote 2. Des Weiteren erteilt die FDA Zulassungen für Arzneimittel bei den zielgerichteten Therapien häufig nur in Verbindung mit einem festgelegten und zeitgleich ebenfalls zugelassenen Companion Diagnostic, das zum Zulassungsbeginn häufig marktexklusiv für das entsprechende Arzneimittel ist. Die Verwendung des Companion Diagnostic ist somit Voraussetzung zur Verschreibung des Arzneimittels durch den Arzt [54].

Die US-amerikanische Gesetzgebung unterscheidet solche standardisierten, zumeist kommerziell erhältlichen Tests von den „laboratory-developed tests“ (LDT), die – siehe die klassischen Testverfahren – von Instituten in Eigennutzung konzipiert, validiert und angewendet werden. Seitens der Deutschen Akkreditierungsstelle (DAkkS) werden die LDT auch als In-house-Tests bezeichnet. Diese unterliegen in der Regel keiner Zulassung oder Kennzeichnungspflicht. Es gibt allerdings einen Leitfaden der DAkkS zur Validierung molekularpathologischer Untersuchungsverfahren [55, 56]. In den USA gibt es seit Januar 2017 ein Positionspapier, in dem eine stärkere, prospektive Regulierung von LDT aufgrund der zunehmenden prognostischen und prädiktiven Bedeutung propagiert wird – dies gilt insbesondere auch für die Stellung und stetig wachsende Bedeutung des NGS [57, 58]. Mit dem FoundationOne® CDx (F1CDx) Test hat Ende 2017 erstmalig ein NGS-Verfahren in den USA eine Zulassung als Companion Diagnostic erhalten (Tab. 3; [59]).

Vor diesem Hintergrund lässt sich die Vielfalt der konkurrierenden klassischen und neuen DNA-analytischen Verfahren zur BRAF-Mutationsbestimmung leichter einordnen. Von den kommerziellen, allelspezifische PCR-Techniken einsetzenden Verfahren ist in den USA derzeitig einzig der Qiagen therascreen® Test beim BRAF-mutierten mKRK empfohlen, in Europa liegt eine CE-Kennzeichnung vor. Es ist zu erwarten, dass es auch für die derzeitig nur beim Melanom zugelassenen Tests bald entsprechende Anpassungen in den USA geben wird, das KRK betreffend. In der BEACON-CRC-Zulassungsstudie waren als Verfahren ausschließlich die PCR und NGS basierend auf lokalen Assays im Studienprotokoll erlaubt [44].

Ein Vergleich zwischen kommerziellen (d. h. FDA-zugelassenen) Tests und LDT führte für die EGFR-, KRAS- und BRAF-Testung zum Ergebnis, dass es in der Assayperformance keinen Gesamtunterschied zwischen den Methoden bezüglich der 3 untersuchten Gene gibt, die durchschnittliche Analysegenauigkeit betrug 97 % [60]. Vor dem Hintergrund der zuvor für das KRK dargestellten Notwendigkeit zur Testung von KRAS, BRAF, MSI‑H/dMMR, MLH1 und ggf. weiteren Genen steht in der pathologischen Praxis heute natürlich die Paneldiagnostik im Fokus – in Deutschland setzen alle universitären und große nichtuniversitären Einrichtungen dafür mittlerweile fokussiertes NGS ein. Hierbei kommen als Plattformen häufig die Systeme von Illumina (MiSeq™ oder NextSeq™) und Thermo Fisher (Ion Gene Studio S5™) zum Einsatz [61,62,63]. Im Rahmen einer deutschlandweiten multizentrische Validierungsstudie konnte eine hohe Überstimmung zwischen verschiedenen NGS-Plattformen und Genpanels gezeigt werden. Getestet wurden neben dem KRK auch Proben von Lungen- und Mammakarzinomen [61].

Immunhistochemische Verfahren

Neben den DNA-analytischen Verfahren stellen proteinbasierte Analysen unter Verwendung des VE1-Antikörpers eine Alternative dar zur molekularpathologischen Testung von BRAFV600E. Letztere gilt weithin als der Goldstandard bei der BRAF-Mutationstestung [50, 64]. Zugleich aber ist der proteinbasierte immunhistologische Nachweis, der auch bei der MSI-Testung Einsatz finden kann, die einzige sinnvoll praktizierbare Methode zur Bestimmung der Expression mutanten BRAF-Proteins. Die Spezifität des Verfahrens liegt bei 98–100 %, die Sensitivität bei 85–100 % [49, 50], die In-Lab-Turnaround-Zeit einen Tag. Die Verlässlichkeit der Methode ist somit grundlegend gegeben, allerdings bleiben einige Herausforderungen, wie zum Beispiel die Etablierung eines verlässlichen Scorings der Proteinexpression [64]. Die Bestimmung der Immunfärbung zur Bestimmung BRAF-mutierten Proteins bietet sich somit zwar als schneller und kostengünstiger Test an, jedoch ist beim mKRK mittlerweile die Bestimmung multipler Alterationen erforderlich, sodass DNA-analytische Verfahren heutzutage sicherlich bevorzugt zur Anwendung kommen sollten.

Chu et al. untersuchten populationsbasiert die Ergebnisse der immunhistochemischen Testung (IHC) und NGS-Testung (BRAFV600E) [65]. Die Rate falsch positiver IHC-Tests betrug 17 %, wobei nur 43 % aller IHC-getesteten Patienten per NGS überprüft wurden. NGS-getestete Patienten hatten ein besseres medianes OS bei jüngerem Alter, geringerer Rate synchroner Metastasen und höherer Therapierate. Die Autoren kamen zu dem Schluss, dass NGS zwar die Standardtestung sein sollte, sollte NGS jedoch nicht unmittelbar zeitnah zugänglich sein, stellt die IHC einen sinnvollen Screeningtest mit rascher Ergebnisverfügbarkeit dar, zumal mittels reflexiver IHC-Testung 57 % mehr BRAF-mutierte mKRK identifiziert werden konnten als durch Standard-NGS-Einsatz.

Fazit für die Praxis

  • Der Nachweis einer BRAFV600E-Mutation ist insbesondere vor dem Hintergrund einer Mikrosatellitenstabilität (MSS) mit einer sehr schlechten Prognose assoziiert und stellt somit einen aggressiven Subtyp des kolorektalen Karzinoms (KRK) dar.

  • Patienten mit BRAFV600E-mutiertem metastasiertem KRK (mKRK) weisen somit einen hohen „unmet medical need“ auf. Mit Encorafenib + Cetuximab steht nunmehr ein chemotherapiefreier, zielgerichteter Therapiestandard in der Zweit- und Drittlinie zur Verfügung. Die Aufnahme der kombinierten BRAF- und EGFR-Blockade in die deutschen/europäischen Behandlungsalgorithmen und Guidelines ist in den kommenden Monaten zu erwarten.

  • Im Sinne einer adäquaten Planung der Therapiesequenz ist daher bei allen Patienten mit einem mKRK vor Einleitung der Erstlinientherapie eine BRAF-Testung unbedingt erforderlich.

  • Für die Testung stehen eine Vielzahl von Methoden zur Verfügung, wobei die Paneldiagnostik mit Next Generation Sequencing – insbesondere in Kombination mit dem Nachweis von weiteren molekularen Alterationen – bevorzugt zur Anwendung kommen sollte.