OR Spectrum

, Volume 39, Issue 1, pp 1–64 | Cite as

Simultaneous lotsizing and scheduling problems: a classification and review of models

Regular Article

Abstract

The current paper presents a structured overview over the literature on dynamic simultaneous lotsizing and scheduling problems. We introduce a classification scheme, review the historical development of research in this area and identify recent developments. The main contribution of the present review is the discussion of the historical development of the body of knowledge in the field of simultaneous lotsizing and scheduling and the identification of recent trends. This helps to reveal research opportunities, but it can also be helpful in the selection of appropriate models for industrial applications.

Keywords

Dynamic lotsizing Scheduling Review 

References

  1. Almada-Lobo B, Carravilla MA, Oliveira JF (2008) Production planning and scheduling in the glass container industry: a VNS approach. Int J Prod Econ 114(1):363–375CrossRefGoogle Scholar
  2. Almada-Lobo B, James RJW (2010) Neighbourhood search meta-heuristics for capacitated lot-sizing with sequence-dependent setups. Int J Prod Res 48(3):861–878CrossRefGoogle Scholar
  3. Almada-Lobo B, Klabjan D, Carravilla MA, Oliveira JF (2007) Single machine multi-product capacitated lot sizing with sequence-dependent setups. Int J Prod Res 45(20):4873–4894CrossRefGoogle Scholar
  4. Almada-Lobo B, Klabjan D, Carravilla MA, Oliveira JF (2010) Multiple machine continuous setup lotsizing with sequence-dependent setups. Comput Optim Appl 47(3):529–552CrossRefGoogle Scholar
  5. Almeder C, Almada-Lobo B (2011) Synchronisation of scarce resources for a parallel machine lotsizing problem. Int J Prod Res 49(24):7315–7335CrossRefGoogle Scholar
  6. Almeder C, Klabjan D, Traxler R, Almada-Lobo B (2015) Lead time considerations for the multi-level capacitated lot-sizing problem. Eur J Oper Res 241(3):727–738CrossRefGoogle Scholar
  7. Amorim P, Antunes CH, Almada-Lobo B (2011) Multi-objective lot-sizing and scheduling dealing with perishability issues. Ind Eng Chem Res 50(6):3371–3381CrossRefGoogle Scholar
  8. Amorim P, Günther H-O, Almada-Lobo B (2012) Multi-objective integrated production and distribution planning of perishable products. Int J Prod Econ 138(1):89–101CrossRefGoogle Scholar
  9. Amorim P, Pinto-Varela T, Almada-Lobo B, Barbósa-Póvoa APFD (2013) Comparing models for lot-sizing and scheduling of single-stage continuous processes: Operations research and process systems engineering approaches. Comput Chem Eng 52:177–192CrossRefGoogle Scholar
  10. Aras O, Swanson L (1982) A lot sizing and sequencing algorithm for dynamic demands upon a single facility. J Oper Manag 2(3):177–185CrossRefGoogle Scholar
  11. Babaei M, Mohammadi M, Ghomi SMTF (2014) A genetic algorithm for the simultaneous lot sizing and scheduling problem in capacitated flow shop with complex setups and backlogging. Int J Adv Manuf Technol 70(1–4):125–134CrossRefGoogle Scholar
  12. Baker T, Muckstadt J Jr (1989) The CHES problems. Chesapeake Decision Sciences Inc, Tech. repGoogle Scholar
  13. Baldo TA, Santos MO, Almada-Lobo B, Neto RM (2014) An optimization approach for the lot sizing and scheduling problem in the brewery industry. Comput Ind Eng 72:58–71CrossRefGoogle Scholar
  14. Brüggemann W, Fischer K, Jahnke H (2003a) Problems, models and complexity. Part I: theory. J Math Model Algorithms 2(2):121–151CrossRefGoogle Scholar
  15. Brüggemann W, Fischer K, Jahnke H (2003b) Problems, models and complexity. Part II: application to the DLSP. J Math Model Algorithms 2(2):153–169CrossRefGoogle Scholar
  16. Brüggemann W, Jahnke H (1994) DLSP for two-stage multi-item batch production. Int J Prod Res 32(4):755–768CrossRefGoogle Scholar
  17. Brüggemann W, Jahnke H (2000a) The discrete lot-sizing and scheduling problem: complexity and modification for batch availability. Eur J Oper Res 124(3):511–528CrossRefGoogle Scholar
  18. Brüggemann W, Jahnke H (2000b) Erratum to “The discrete lot-sizing and scheduling problem: complexity and modification for batch availability” [EJOR 124 (3) (2000) 511–528]. Eur J Oper Res 126(3):688Google Scholar
  19. Buschkühl L, Sahling F, Helber S, Tempelmeier H (2010) Dynamic capacitated lot-sizing problems: a classification and review of solution approaches. OR Spectr 32(2):231–261CrossRefGoogle Scholar
  20. Camargo VCB, Toledo FMB, Almada-Lobo B (2012) Three time-based scale formulations for the two stage lot sizing and scheduling in process industries. J Oper Res Soc 63:1613–1630CrossRefGoogle Scholar
  21. Camargo VCB, Toledo FMB, Almada-Lobo B (2014) HOPS—hamming-oriented partition search for production planning in the spinning industry. Eur J Oper Res 234(1):266–277CrossRefGoogle Scholar
  22. Campbell GM (1992) Using short-term dedication for scheduling multiple products on parallel machines. Prod Oper Manag 1(3):295–307CrossRefGoogle Scholar
  23. Cattrysse D, Salomon M, Kuik R, Van Wassenhove LN (1993) A dual ascent and column generation heuristic for the discrete lotsizing and scheduling problem with setup times. Manag Sci 39(4):477–486CrossRefGoogle Scholar
  24. Chang P, Chang C, Chen C (2004) An extension of the multi-machine multi-level proportional lot sizing and scheduling model for product-life-cycle demand. Int J Oper Res 1(1):11–22Google Scholar
  25. Clark AR (2003) Optimization approximations for capacity constrained material requirements planning. Int J Prod Econ 84(2):115–131CrossRefGoogle Scholar
  26. Clark AR, Clark SJ (2000) Rolling-horizon lot-sizing when set-up times are sequence-dependent. Int J Prod Res 38(10):2287–2307CrossRefGoogle Scholar
  27. Clark AR, Mahdieh M, Rangel S (2014) Production lot sizing and scheduling with non-triangular sequence-dependent setup times. Int J Prod Res 52(8):2490–2503CrossRefGoogle Scholar
  28. Clark AR, Morabito R, Toso EAV (2010) Production setup-sequencing and lot-sizing at an animal nutrition plant through ATSP subtour elimination and patching. J Sched 13(2):111–121CrossRefGoogle Scholar
  29. Constantino M (2000) A polyhedral approach to a production planning problem. Ann Oper Res 96(1–4):75–95CrossRefGoogle Scholar
  30. Dastidar SG, Nagi R (2005) Scheduling injection molding operations with multiple resource constraints and sequence dependent setup times and costs. Comput Oper Res 32(11):2987–3005CrossRefGoogle Scholar
  31. Dauzère-Pérès S, Lasserre J-B (1994) Integration of lotsizing and scheduling decisions in a job-shop. Eur J Oper Res 28(3):413–426CrossRefGoogle Scholar
  32. Dauzère-Pérès S, Lasserre J-B (2002) On the importance of sequencing decisions in production planning and scheduling. Int Trans Oper Res 9(6):779–793CrossRefGoogle Scholar
  33. de Araujo SA, Arenales MN, Clark AR (2007) Joint rolling-horizon scheduling of materials processing and lot-sizing with sequence-dependent setups. J Heuristics 13(4):337–358CrossRefGoogle Scholar
  34. de Araujo SA, Arenales MN, Clark AR (2008) Lot sizing and furnace scheduling in small foundries. Comput Oper Res 35(3):916–932CrossRefGoogle Scholar
  35. de Araujo SA, Clark AR (2013) A priori reformulations for joint rolling-horizon scheduling of materials processing and lot-sizing problem. Comput Ind Eng 65(4):577–585CrossRefGoogle Scholar
  36. de Matta R (1994) A Lagrangean decomposition solution to a single line multiproduct scheduling problem. Eur J Oper Res 79(1):25–37CrossRefGoogle Scholar
  37. de Matta R, Guignard M (1994a) Dynamic production scheduling for a process industry. Oper Res 42(3):492–503CrossRefGoogle Scholar
  38. de Matta R, Guignard M (1994b) Studying the effects of production loss due to setup in dynamic production scheduling. Eur J Oper Res 72(1):62–73CrossRefGoogle Scholar
  39. de Matta R, Guignard M (1995) The performance of rolling production schedules in a process industry. IIE Trans 27(5):564–573CrossRefGoogle Scholar
  40. de Souza PS, Talukdar SN (1993) Asynchronous organizations for multialgorithm problems. In: Proceedings of the 1993 ACM/SIGAPP symposium on applied computing: states of the art and practice, SAC n++93, pp 286–293Google Scholar
  41. Drexl A, Haase K (1995) Proportional lotsizing and scheduling. Int J Prod Econ 40(1):73–87CrossRefGoogle Scholar
  42. Drexl A, Haase K (1996) Sequential-analysis based randomized-regret-methods for lot-sizing and scheduling. J Oper Res Soc 47(2):251–265CrossRefGoogle Scholar
  43. Drexl A, Haase K, Kimms A (1995) Losgrößen- und Ablaufplanung in PPS-Systemen auf der Basis randomisierter Opportunitätskosten. Z Betriebswirtschaft 65(3):267–285Google Scholar
  44. Drexl A, Kimms A (1997) Lot sizing and scheduling—survey and extensions. Eur J Oper Res 99(2):221–235CrossRefGoogle Scholar
  45. Dumas Y, Desrosiers J, Gelinas E, Solomon MM (1995) An optimal algorithm for the traveling salesman problem with time windows. Oper Res 43(2):367–371CrossRefGoogle Scholar
  46. Eppen GD, Martin RK (1987) Solving multi-item capacitated lot-sizing problems using variable redefinition. Oper Res 35(6):832–848CrossRefGoogle Scholar
  47. Erdirik-Dogan M, Grossmann IE (2008) Simultaneous planning and scheduling of single-stage multi-product continuous plants with parallel lines. Comput Chem Eng 32(11):2664–2684CrossRefGoogle Scholar
  48. Fandel G, Stammen-Hegener C (2006) Simultaneous lot sizing and scheduling for multi-product multi-level production. Int J Prod Econ 104(2):308–316CrossRefGoogle Scholar
  49. Ferreira D, Clark AR, Almada-Lobo B, Morabito Neto R (2012) Single-stage formulations for synchronised two-stage lot sizing and scheduling in soft drink production. Int J Prod Econ 136(2):255–265CrossRefGoogle Scholar
  50. Ferreira D, Morabito Neto R, Rangel S (2009) Solution approaches for the soft drink integrated production lot sizing and scheduling problem. Eur J Oper Res 196(2):697–706CrossRefGoogle Scholar
  51. Ferreira D, Morabito Neto R, Rangel S (2010) Relax and fix heuristics to solve one-stage one-machine lot-scheduling models for small-scale soft drink plants. Comput Oper Res 37(4):684–691CrossRefGoogle Scholar
  52. Figueira G, Santos MO, Almada-Lobo B (2013) A hybrid VNS approach for the short-term production planning and scheduling: a case study in the pulp and paper industry. Comput Oper Res 40(7):1804–1818CrossRefGoogle Scholar
  53. Filho MAF, Santos MO, Meneses CN (2012) Asynchronous teams for joint lot-sizing and scheduling problem in flow shops. Int J Prod Res 50(20):5809–5822CrossRefGoogle Scholar
  54. Fleischmann B (1990) The discrete lot-sizing and scheduling problem. Eur J Oper Res 44(3):337–348CrossRefGoogle Scholar
  55. Fleischmann B (1994) The discrete lot-sizing and scheduling problem with sequence-dependent setup costs. Eur J Oper Res 75(2):395–404CrossRefGoogle Scholar
  56. Fleischmann B, Meyr H (1997) The general lotsizing and scheduling problem. OR Spectr 19(1):11–21CrossRefGoogle Scholar
  57. Furlan MM, Almada-Lobo B, Santos MO, Morabito Neto R (2013) A genetic algorithm-based heuristic with unequal individuals to tackle the lot-sizing and scheduling problem. In: Proceedings of XLV SBPO—Simpösio Brasileiro de Pesquisa Operacional, pp 3505–3516Google Scholar
  58. Furlan MM, Almada-Lobo B, Santos MO, Morabito Neto R (2015) Unequal individual genetic algorithm with intelligent diversification for the lot-scheduling problem in integrated mills using multiple-paper machines. Comput Oper Res 59:33–50CrossRefGoogle Scholar
  59. Gaglioppa F, Miller LA, Benjaafar S (2008) Multitask and multistage production planning and scheduling for process industries. Oper Res 56(4):1010–1025CrossRefGoogle Scholar
  60. Gicquel C (2008) MIP models and exact methods for the discrete lot-sizing and scheduling problem with sequence-dependent changeover costs and times. Ph.D. thesis, École Centrale ParisGoogle Scholar
  61. Gicquel C, Lisser A, Minoux M (2014) An evaluation of semidefinite programming based approaches for discrete lot-sizing problems. Eur J Oper Res 237(2):498–507CrossRefGoogle Scholar
  62. Gicquel C, Miègeville N, Minoux M, Dallery Y (2009a) Discrete lot sizing and scheduling using product decomposition into attributes. Comput Oper Res 36(9):2690–2698CrossRefGoogle Scholar
  63. Gicquel C, Minoux M (2015) Multi-product valid inequalities for the discrete lot-sizing and scheduling problem. Comput Oper Res 54:12–20CrossRefGoogle Scholar
  64. Gicquel C, Minoux M, Dallery Y (2009b) On the discrete lot-sizing and scheduling problem with sequence-dependent changeover times. Oper Res Lett 37(1):32–36CrossRefGoogle Scholar
  65. Gicquel C, Minoux M, Dallery Y (2011) Exact solution approaches for the discrete lot-sizing and scheduling problem with parallel resources. Int J Prod Res 49(9):2587–2603CrossRefGoogle Scholar
  66. Gicquel C, Wolsey LA, Minoux M (2012) On discrete lot-sizing and scheduling on identical parallel machines. Optim Lett 6(3):545–557CrossRefGoogle Scholar
  67. Göthe-Lundgren M, Lundgren JT, Persson JA (2002) An optimization model for refinery production scheduling. Int J Prod Econ 78(3):255–270CrossRefGoogle Scholar
  68. Grünert T (1998) Multi-level sequence-dependent dynamic lotsizing and scheduling. Shaker Verlag, AachenGoogle Scholar
  69. Guimarães L, Klabjan D, Almada-Lobo B (2013) Pricing, relaxing and fixing under lot sizing and scheduling. Eur J Oper Res 230(2):399–411CrossRefGoogle Scholar
  70. Guimarães L, Klabjan D, Almada-Lobo B (2014) Modeling lotsizing and scheduling problems with sequence dependent setups. Eur J Oper Res 239(3):644–662CrossRefGoogle Scholar
  71. Günther H-O (2014) The block planning approach for continuous time-based dynamic lot sizing and scheduling. Bus Res 7(1):51–76CrossRefGoogle Scholar
  72. Günther H-O, Grunow M, Neuhaus U (2006) Realizing block planning concepts in make-and-pack production using MILP modelling and SAP APO. Int J Prod Res 44(18–19):3711–3726CrossRefGoogle Scholar
  73. Gupta D, Magnusson T (2005) The capacitated lot-sizing and scheduling problem with sequence-dependent setup costs and setup times. Comput Oper Res 32(4):727–747CrossRefGoogle Scholar
  74. Haase K (1994) Lotsizing and scheduling for production planning. Springer, BerlinCrossRefGoogle Scholar
  75. Haase K (1996) Capacitated lot-sizing with sequence dependent setup costs. OR Spectr 18(1):51–59CrossRefGoogle Scholar
  76. Haase K, Kimms A (2000) Lot sizing and scheduling with sequence-dependent setup costs and times and efficient rescheduling opportunities. Int J Prod Econ 66(2):159–169CrossRefGoogle Scholar
  77. Harris FW (1913) How many parts to make at once. Fact Mag Manag 10(2):135–136, 152Google Scholar
  78. Heuts RMJ, Seidel HP, Selen WJ (1992) A comparison of two lot sizing-sequencing heuristics for the process industry. Eur J Oper Res 59(3):413–424CrossRefGoogle Scholar
  79. James RJW, Almada-Lobo B (2011) Single and parallel machine capacitated lotsizing and scheduling: new iterative MIP-based neighborhood search heuristics. Comput Oper Res 38(12):1816–1825CrossRefGoogle Scholar
  80. Jans R, Degraeve Z (2004) An industrial extension of the discrete lot-sizing and scheduling problem. IIE Trans 36(1):47–58CrossRefGoogle Scholar
  81. Jans R, Degraeve Z (2008) Modeling industrial lot sizing problems: a review. Int J Prod Res 46(6):1619–1643CrossRefGoogle Scholar
  82. Jordan C, Drexl A (1998) Discrete lotsizing and scheduling by batch sequencing. Manag Sci 44(5):698–713CrossRefGoogle Scholar
  83. Kaczmarczyk W (2011) Proportional lot-sizing and scheduling problem with identical parallel machines. Int J Prod Res 49(9):2605–2623CrossRefGoogle Scholar
  84. Kang S, Malik K, Thomas LJ (1999) Lotsizing and scheduling on parallel machines with sequence-dependent setup costs. Manag Sci 45(2):273–289CrossRefGoogle Scholar
  85. Karimi-Nasab M, Modarres M (2015) Lot sizing and job shop scheduling with compressible process times: a cut and branch approach. Comput Ind Eng 85:196–205CrossRefGoogle Scholar
  86. Karimi-Nasab M, Modarres M, Seyedhoseini S (2015) A self-adaptive PSO for joint lot sizing and job shop scheduling with compressible process times. Appl Soft Comput 27:137–147CrossRefGoogle Scholar
  87. Karimi-Nasab M, Seyedhoseini SM (2013) Multi-level lot sizing and job shop scheduling with compressible process times: a cutting plane approach. Eur J Oper Res 231(3):598–616CrossRefGoogle Scholar
  88. Karimi-Nasab M, Seyedhoseini SM, Modarres M, Heidari M (2013) Multi-period lot sizing and job shop scheduling with compressible process times for multilevel product structures. Int J Prod Res 51(20):6229–6246CrossRefGoogle Scholar
  89. Karmarkar US, Schrage L (1985) The deterministic dynamic product cycling problem. Oper Res 33(2):326–345CrossRefGoogle Scholar
  90. Kilger C, Meyr H (2015) Demand fulfillment and ATP. In: Stadtler H, Kilger C, Meyr H (eds) Supply chain management and advanced planning, 5th edn. Springer texts in business and economics, vol 9. Springer, Berlin, pp 177–194Google Scholar
  91. Kimms A (1996a) Competitive methods for multi-level lot sizing and scheduling: tabu search and randomized regrets. Int J Prod Res 34(8):2279–2298CrossRefGoogle Scholar
  92. Kimms A (1996b) Multi-level, single-machine lot sizing and scheduling (with initial inventory). Eur J Oper Res 89(1):86–99CrossRefGoogle Scholar
  93. Kimms A (1997a) Demand shuffle—a method for multilevel proportional lot sizing and scheduling. Nav Res Logist 44(4):319–340CrossRefGoogle Scholar
  94. Kimms A (1997b) Multi-level lot sizing and scheduling. Physics, HeidelbergCrossRefGoogle Scholar
  95. Kimms A (1999) A genetic algorithm for multi-level, multi-machine lot sizing and scheduling. Comput Oper Res 26(8):829–848CrossRefGoogle Scholar
  96. Kimms A, Drexl A (1998) Proportional lot sizing and scheduling: some extensions. Networks 32(2):85–101CrossRefGoogle Scholar
  97. Koçlar A, Süral H (2005) A note on “The general lot sizing and scheduling problem”. OR Spectr 27(1):145–146CrossRefGoogle Scholar
  98. Kopanos GM, Puigjaner L, Maravelias CT (2011) Production planning and scheduling of parallel continuous processes with product families. Ind Eng Chem Res 50(3):1369–1378CrossRefGoogle Scholar
  99. Kovács A, Brown KN, Tarim SA (2009) An efficient MIP model for the capacitated lot-sizing and scheduling problem with sequence-dependent setups. Int J Prod Econ 118(1):282–291CrossRefGoogle Scholar
  100. Kwak I, Jeong I (2011) A hierarchical approach for the capacitated lot-sizing and scheduling problem with a special structure of sequence-dependent setups. Int J Prod Res 49(24):7425–7439CrossRefGoogle Scholar
  101. Laguna M (1999) A heuristic for production scheduling and inventory control in the presence of sequence-dependent setup time. IIE Trans 31(2):125–134Google Scholar
  102. Lang JC (2010) Production and inventory management with substitutions. In: Lecture notes in economics and mathematical systems. Springer, HeidelbergGoogle Scholar
  103. Lang JC, Shen ZM (2011) Fix-and-optimize heuristics for capacitated lot-sizing with sequence-dependent setups and substitutions. Eur J Oper Res 214(3):595–605CrossRefGoogle Scholar
  104. Lasdon L, Terjung RC (1971) An efficient algorithm for multi-item scheduling. Oper Res 19(4):946–969CrossRefGoogle Scholar
  105. Liberatore M, Miller T (1985) A hierarchical production planning system. Interfaces 15(4):1–11CrossRefGoogle Scholar
  106. Mac Cawley AF (2014) The international wine supply chain: challenges from bottling to the glass. Ph.D. thesis, Georgia Institute of TechnologyGoogle Scholar
  107. Magnanti TL, Vachani R (1990) A strong cutting plane algorithm for production scheduling with changeover costs. Oper Res 38(3):456–473CrossRefGoogle Scholar
  108. Maldonado M, Rangel S, Ferreira D (2014) A study of different subsequence elimination strategies for the soft drink production planning. J Appl Res Technol 12(4):631–641CrossRefGoogle Scholar
  109. Marinelli F, Nenni ME, Sforza A (2007) Capacitated lot sizing and scheduling with parallel machines and shared buffers: a case study in a packaging company. Ann Oper Res 150(1):177–192CrossRefGoogle Scholar
  110. Mateus GR, Ravetti MG, de Souza MC, Valeriano TM (2010) Capacitated lot sizing and sequence dependent setup scheduling: an iterative approach for integration. J Sched 13(3):245–259CrossRefGoogle Scholar
  111. Menezes AA, Clark AR, Almada-Lobo B (2011) Capacitated lot-sizing and scheduling with sequence-dependent, period-overlapping and non-triangular setups. J Sched 14(2):209–219CrossRefGoogle Scholar
  112. Meyr H (1999) Simultane Losgrößen- und Reihenfolgeplanung für kontinuierliche Produktionslinien. Deutscher Universitätsverlag, WiesbadenCrossRefGoogle Scholar
  113. Meyr H (2000) Simultaneous lotsizing and scheduling by combining local search with dual reoptimization. Eur J Oper Res 120(2):311–326CrossRefGoogle Scholar
  114. Meyr H (2002) Simultaneous lotsizing and scheduling on parallel machines. Eur J Oper Res 139(2):277–292CrossRefGoogle Scholar
  115. Meyr H (2004) Simultane Losgrößen- und Reihenfolgeplanung bei mehrstufiger kontinuierlicher Fertigung. Z Betriebswirtschaft 74(6):585–610Google Scholar
  116. Meyr H, Mann M (2013) A decomposition approach for the general lotsizing and scheduling problem for parallel production lines. Eur J Oper Res 229(3):718–731CrossRefGoogle Scholar
  117. Miller AJ, Wolsey LA (2003) Tight MIP formulations for multi-item discrete lot-sizing problems. Oper Res 51(4):557–565CrossRefGoogle Scholar
  118. Mohammadi M (2010) Integrating lotsizing, loading, and scheduling decisions in flexible flow shops. Int J Adv Manuf Technol 50(9–12):1165–1174CrossRefGoogle Scholar
  119. Mohammadi M, Ghomi SMTF (2011) Genetic algorithm-based heuristic for capacitated lotsizing problem in flow shops with sequence-dependent setups. Expert Syst Appl 38(6):7201–7207CrossRefGoogle Scholar
  120. Mohammadi M, Ghomi SMTF, Jafari N (2011) A genetic algorithm for simultaneous lotsizing and sequencing of the permutation flow shops with sequence-dependent setups. Int J Comput Integr Manuf 24(1):87–93CrossRefGoogle Scholar
  121. Mohammadi M, Ghomi SMTF, Karimi B, Torabi SA (2010a) MIP-based heuristics for lotsizing in capacitated pure flow shop with sequence-dependent setups. Int J Prod Res 48(10):2957–2973CrossRefGoogle Scholar
  122. Mohammadi M, Ghomi SMTF, Karimi B, Torabi SA (2010b) Rolling-horizon and fix-and-relax heuristics for the multi-product multi-level capacitated lotsizing problem with sequence-dependent setups. J Intell Manuf 21(4):501–510CrossRefGoogle Scholar
  123. Mohammadi M, Karimi B, Ghomi SMTF, Torabi SA (2010c) A new algorithmic approach for capacitated lot-sizing problem in flow shops with sequence-dependent setups. Int J Adv Manuf Technol 49(1–4):201–211CrossRefGoogle Scholar
  124. Mohammadi M, Poursabzi O (2014) A rolling horizon-based heuristic to solve a multi-level general lot sizing and scheduling problem with multiple machines (MLGLSP\(\_\)MM) in job shop manufacturing system. Uncertain Supply Chain Manag 2(3):167–178CrossRefGoogle Scholar
  125. Muramatsu K, Warman A, Kobayashi M (2003) A near-optimal solution method of multi-item multi-process dynamic lot size scheduling problem. JSME Int J Ser C Mech Syst Mach Elem Manuf 46(1):46–53CrossRefGoogle Scholar
  126. Pahl J, Voß S (2010) Discrete lot-sizing and scheduling including deterioration and perishability constraints. In: Dangelmaier W, Blecken A, Delius R, Klöpfer S (eds) Advanced manufacturing and sustainable logistics, vol 46. Lecture notes in business information processing. Springer, Berlin, pp 345–357Google Scholar
  127. Pahl J, Voß S, Woodruff DL (2011) Discrete lot-sizing and scheduling with sequence-dependent setup times and costs including deterioration and perishability constraints. In: Proceedings of the 44th Hawaii international conference on system sciences. IEEE Computer Society, Los Alamitos, pp 1–10Google Scholar
  128. Persson JA, Göthe-Lundgren M, Lundgren JT, Gendron B (2004) A tabu search heuristic for scheduling the production processes at an oil refinery. Int J Prod Res 42(3):445–471CrossRefGoogle Scholar
  129. Pochet Y, Wolsey LA (1991) Solving multi-item lot-sizing problems using strong cutting planes. Manag Sci 37(1):53–67CrossRefGoogle Scholar
  130. Pochet Y, Wolsey LA (2006) Production planning by mixed integer programming. Springer, New YorkGoogle Scholar
  131. Quadt D, Kuhn H (2005) Conceptual framework for lot-sizing and scheduling of flexible flow lines. Int J Prod Res 43(11):2291–2308CrossRefGoogle Scholar
  132. Quadt D, Kuhn H (2008) Capacitated lot-sizing with extensions: a review. 4OR 6(1):61–83Google Scholar
  133. Quadt D, Kuhn H (2009) Capacitated lot-sizing and scheduling with parallel machines, back-orders and setup carry-over. Nav Res Logist 56(4):366–384CrossRefGoogle Scholar
  134. Ramezanian R, Saidi-Mehrabad M, Fattahi P (2013a) MIP formulation and heuristics for multi-stage capacitated lot-sizing and scheduling problem with availability constraints. J Manuf Syst 32(2):392–401CrossRefGoogle Scholar
  135. Ramezanian R, Saidi-Mehrabad M, Teimoury E (2013b) A mathematical model for integrating lot-sizing and scheduling problem in capacitated flow shop environments. Int J Adv Manuf Technol 66(1–4):347–361CrossRefGoogle Scholar
  136. Rocha LR, Ravetti MG, Meteus GR, Pardalos PM (2008) Exact algorithms for a scheduling problem with unrelated parallel machines and sequence and machine-dependent setup times. Comput Oper Res 35(4):1250–1264CrossRefGoogle Scholar
  137. Rohaninejad M, Kheirkhah A, Fattahi P (2015) Simultaneous lot-sizing and scheduling in flexible job shop problems. Int J Adv Manuf Technol 78(1):1–18CrossRefGoogle Scholar
  138. Salomon M, Solomon MM, Van Wassenhove LN, Dumas Y, Dauzère-Pérès S (1997) Solving the discrete lotsizing and scheduling problem with sequence dependent set-up costs and set-up times using the traveling salesman problem with time windows. Eur J Oper Res 100(3):494–513CrossRefGoogle Scholar
  139. Santos MO, Almada-Lobo B (2012) Integrated pulp and paper mill planning and scheduling. Comput Ind Eng 63(1):1–12CrossRefGoogle Scholar
  140. Schrage L (1982) The multiproduct lot scheduling problem. In: Dempster M, Lenstra J, Rinnooy Kan A (eds) Deterministic and stochastic scheduling. Kluwer Academic Publishers, Dordrecht, pp 233–244Google Scholar
  141. Seeanner F (2013) Multi-stage simultaneous lot-sizing and scheduling—planning of flow lines with shifting bottlenecks. In: Produktion und Logistik, Springer Gabler, WiesbadenGoogle Scholar
  142. Seeanner F, Almada-Lobo B, Meyr H (2013) Combining the principles of variable neighborhood decomposition search and the fix&optimize heuristic to solve multi-level lot-sizing and scheduling problems. Comput Oper Res 40(1):303–317CrossRefGoogle Scholar
  143. Seeanner F, Meyr H (2013) Multi-stage simultaneous lot-sizing and scheduling for flow line production. OR Spectr 35(1):33–73CrossRefGoogle Scholar
  144. Shim I, Kim H, Doh H, Lee D (2011) A two-stage heuristic for single machine capacitated lot-sizing and scheduling with sequence-dependent setup costs. Comput Ind Eng 61(4):920–929CrossRefGoogle Scholar
  145. Sikora R, Chhajed D, Shaw MJ (1996) Integrating the lot-sizing and sequencing decisions for scheduling a capacitated flow line. Comput Ind Eng 30(4):659–679CrossRefGoogle Scholar
  146. Sikora RT (1996) A genetic algorithm for integrating lot-sizing and sequencing in scheduling a capacitated flow line. Comput Ind Eng 30(4):969–981CrossRefGoogle Scholar
  147. Smith-Daniels VL, Ritzman LP (1988) A model for lot sizing and sequencing in process industries. J Prod Res 26(4):647–674CrossRefGoogle Scholar
  148. Smith-Daniels VL, Smith-Daniels DE (1986) A mixed integer programming model for lot sizing and sequencing packaging lines in the process industries. IIE Trans 18(3):278–285CrossRefGoogle Scholar
  149. Stadtler H (2011) Multi-level single machine lot-sizing and scheduling with zero lead times. Eur J Oper Res 209(3):241–252CrossRefGoogle Scholar
  150. Stadtler H, Sahling F (2013) A lot-sizing and scheduling model for multi-stage flow lines with zero lead times. Eur J Oper Res 225(3):404–419CrossRefGoogle Scholar
  151. Suerie C (2005) Campaign planning in time-indexed model formulations. Int J Prod Res 43(1):49–66CrossRefGoogle Scholar
  152. Suerie C (2006) Modeling of period overlapping setup times. Eur J Oper Res 174(2):874–886CrossRefGoogle Scholar
  153. Supithak W, Liman SD, Montes EJ (2010) Lot-sizing and scheduling problem with earliness tardiness and setup penalties. Comput Ind Eng 58(3):363–372CrossRefGoogle Scholar
  154. Tempelmeier H, Buschkühl L (2008) Dynamic multi-machine lotsizing and sequencing with simultaneous scheduling of a common setup resource. Int J Prod Econ 113(1):401–412CrossRefGoogle Scholar
  155. Tempelmeier H, Copil K (2015) Capacitated lot sizing with parallel machines, sequence-dependent setups and a common setup operator. OR Spectr doi:10.1007/s00291-015-0410-2
  156. Tiacci L, Saetta S (2012) Demand forecasting, lot sizing and scheduling on a rolling horizon basis. Int J Prod Econ 140(2):803–814CrossRefGoogle Scholar
  157. Toledo CFM, Arantes MDS, de Oliveira RRR, Almada-Lobo B (2013) Glass container production scheduling through hybrid multi-population based evolutionary algorithm. Appl Soft Comput 13(3):1352–1364Google Scholar
  158. Toledo CFM, de Jesus Filho JEF, França PM (2008) Meta-heuristic approaches for a soft drink industry problem. IEEE Int Conf Emerg Technol Fact Autom 2008:1384–1391Google Scholar
  159. Toledo CFM, de Oliveira L, de Freitas Pereira R, França PM, Morabito R (2014) A genetic algorithm/mathematical programming approach to solve a two-level soft drink production problem. Comput Oper Res 48(1):40–52CrossRefGoogle Scholar
  160. Toledo CFM, de Oliveira L, de Oliveira RRR, Pereira MR (2010) Parallel genetic algorithm approaches applied to solve a synchronized and integrated lot sizing and scheduling problem. In: Proceedings of the 2010 ACM symposium on applied computing (SAC’10). ACM, New York, pp 1148–1152Google Scholar
  161. Toledo CFM, França PM, Morabito R, Kimms A (2009) Multi-population genetic algorithm to solve the synchronized and integrated two-level lot sizing and scheduling problem. Int J Prod Res 47(11):3097–3119CrossRefGoogle Scholar
  162. Toledo CFM, França PM, Rosa KA (2008) Evaluating genetic algorithms with different population structures on a lot sizing and scheduling problem. In: Proceedings of the 2008 ACM symposium on applied computing (Fortaleza. Ceara, Brazil), pp 1777–1781Google Scholar
  163. Toledo CFM, Kimms A, França PM, Morabito R (2006) A mathematical model for the synchronized and integrated two-level lot sizing and scheduling problem. University of Campinas, BrazilGoogle Scholar
  164. Toledo CFM, Kimms A, França PM, Morabito R (2015) The synchronized and integrated two-level lot sizing and scheduling problem: evaluating the generalized mathematical model. Math Probl Eng (Article ID 182781)Google Scholar
  165. Toso EAV, Morabito R, Clark AR (2009) Lot sizing and sequencing optimisation at an animal-feed plant. Comput Ind Eng 57(3):813–821CrossRefGoogle Scholar
  166. Transchel S, Minner S, Kallrath J, Löhndorf N, Eberhard U (2011) A hybrid general lot-sizing and scheduling formulation for a production process with a two-stage product structure. Int J Prod Res 49(9):2463–2480CrossRefGoogle Scholar
  167. Urrutia EDG, Aggoune R, Dauzère-Pérères S (2014) Solving the integrated lot-sizing and job-shop scheduling problem. Int J Prod Res 17(52):5236–5254CrossRefGoogle Scholar
  168. van Eijl CA, van Hoesel CPM (1997) On the discrete lot-sizing and scheduling problem with Wagner–Whitin costs. Oper Res Lett 20(1):7–13CrossRefGoogle Scholar
  169. van Hoesel S, Kolen A (1994) A linear description of the discrete lot-sizing and scheduling problem. Eur J Oper Res 75(2):342–353CrossRefGoogle Scholar
  170. Vanderbeck F (1998) Lot-sizing with start-up times. Manag Sci 44(10):1409–1425CrossRefGoogle Scholar
  171. Wagner HM, Whitin TM (1958) Dynamic version of the economic lot size model. Manag Sci 5(1):89–96CrossRefGoogle Scholar
  172. Wolosewicz C, Dauzère-Pérès S, Aggoune R (2015) A Lagrangian heuristic for an integrated lot-sizing and fixed scheduling problem. Eur J Oper Res 244(1):3–12CrossRefGoogle Scholar
  173. Wolsey LA (1997) MIP modelling of changeovers in production planning and scheduling problems. Eur J Oper Res 99(1):154–165CrossRefGoogle Scholar
  174. Wolsey LA (2002) Solving multi-item lot-sizing problems with an MIP solver using classification and reformulation. Manag Sci 48(12):1587–1602CrossRefGoogle Scholar
  175. Xiao J, Yang H, Zhang C, Zheng L, Gupta JND (2015) A hybrid lagrangian-simulated annealing-based heuristic for the parallel-machine capacitated lot-sizing and scheduling problem with sequence-dependent setup times. Comput Oper Res 63:72–82CrossRefGoogle Scholar
  176. Xiao J, Zhang C, Zheng L, Gupta JND (2013) MIP-based fix-and-optimise algorithms for the parallel machine capacitated lot-sizing and scheduling problem. Int J Prod Res 51(16):5011–5028CrossRefGoogle Scholar
  177. Zhu X, Wilhelm WE (2006) Scheduling and lot sizing with sequence-dependent setup: a literature review. IIE Trans 38(11):987–1007CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Department of Supply Chain Management and ProductionUniversity of CologneCologneGermany
  2. 2.Department of Supply Chain ManagementUniversity of HohenheimStuttgartGermany

Personalised recommendations