Skip to main content

Advertisement

Log in

Fabrication and in vitro characterization of nisin-incorporated PCL/PEG electrospun nanofibers for wound dressing applications

  • ORIGINAL PAPER
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

The demand for wound care is increasing globally and the traditional wound dressings offer limited support to the healing process, failing to meet the requirements of current healthcare system. Drug-controlled release nanotechnology has garnered interest recently in the field of biomedicine. Electrospun nanofibers are considered as an advanced wound dressing due to their unique structure and a biological function similar to the extracellular matrix. In this study, a polycaprolactone (PCL)-polyethylene glycol (PEG) loaded with nisin was developed by electrospinning technique. The fabricated nanofiber was characterized by scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR). The degradation index, in vitro release studies, antioxidant activity, and cell cytotoxicity analyses of the nanofibers were also performed. The antibacterial activity of the nanofiber was evaluated against wound causing skin pathogens like Staphylococcus aureus, Pseudomonas aeruginosa, Enterococcus faecalis, and Klebsiella pneumoniae. The FTIR data demonstrate the interactions between PCL, PEG, and nisin. The presence of nisin in the fiber was confirmed by the characteristic bands of nisin at 3398.63, 1643.23, and 1242.17 cm−1. The nanofibers exhibited maximum controlled nisin release of 94.3% at 24 h. The nisin-loaded nanofibers exhibited antibacterial activity against all the indicator organisms used in the study. About 78% viability was observed on nisin-loaded nanofibers during the MTT assay. The results indicated that the fabricated antibacterial nanofiber has the potential for wound healing application and the treatment of bacterial infections in wounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data and code availability

Not applicable.

References

  1. Momoh FU, Boateng JS, Richardson SCW et al (2015) Development and functional characterization of alginate dressing as potential protein delivery system for wound healing. Int J Biol Macromol 81:137–150

    Article  CAS  PubMed  Google Scholar 

  2. Saghazadeh S, Rinoldi C, Schot M et al (2018) Drug delivery systems and materials for wound healing applications. Adv Drug Deliv Rev 127:138–166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Augustine R, Kalarikkal N, Thomas S (2016) Electrospun PCL membranes incorporated with biosynthesized silver nanoparticles as antibacterial wound dressings. Appl Nanosci 6:337–344

    Article  CAS  Google Scholar 

  4. Kulkarni D, Musale S, Panzade P et al (2022) Surface functionalization of nanofibers: the multifaceted approach for advanced biomedical applications. Nanomaterials 12:3899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Felgueiras HP, Amorim MTP (2017) Functionalization of electrospun polymeric wound dressings with antimicrobial peptides. Colloids Surf B Biointerfaces 156:133–148

    Article  CAS  PubMed  Google Scholar 

  6. Garkal A, Kulkarni D, Musale S et al (2021) Electrospinning nanofiber technology: a multifaceted paradigm in biomedical applications. New J Chem 45:21508–21533

    Article  CAS  Google Scholar 

  7. Zhao R, Li X, Sun B et al (2014) Electrospun chitosan/sericin composite nanofibers with antibacterial property as potential wound dressings. Int J Biol Macromol 68:92–97

    Article  CAS  PubMed  Google Scholar 

  8. Çalamak S, Erdoğdu C, Özalp M, Ulubayram K (2014) Silk fibroin based antibacterial bionanotextiles as wound dressing materials. Mater Sci Eng, C 43:11–20

    Article  Google Scholar 

  9. Hu X, Liu S, Zhou G et al (2014) Electrospinning of polymeric nanofibers for drug delivery applications. J Control Release 185:12–21. https://doi.org/10.1016/j.jconrel.2014.04.018

    Article  CAS  PubMed  Google Scholar 

  10. Rošic R, Kocbek P, Baumgartner S, Kristl J (2011) Electro-spun hydroxyethyl cellulose nanofibers: the relationship between structure and process. J Drug Deliv Sci Technol 21:229–236

    Article  Google Scholar 

  11. Pant HR, Neupane MP, Pant B et al (2011) Fabrication of highly porous poly (ɛ-caprolactone) fibers for novel tissue scaffold via water-bath electrospinning. Colloids Surf B Biointerfaces 88:587–592

    Article  CAS  PubMed  Google Scholar 

  12. Beachley V, Wen X (2010) Polymer nanofibrous structures: fabrication, biofunctionalization, and cell interactions. Prog Polym Sci 35:868–892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Khil M, Cha D, Kim H et al (2003) Electrospun nanofibrous polyurethane membrane as wound dressing. J Biomed Mater Res Part B Appl Biomater 67:675–679

    Article  Google Scholar 

  14. Dash TK, Konkimalla VB (2012) Poly-є-caprolactone based formulations for drug delivery and tissue engineering: a review. J Control Release 158:15–33

    Article  CAS  PubMed  Google Scholar 

  15. Luong-Van E, Grøndahl L, Chua KN et al (2006) Controlled release of heparin from poly (ε-caprolactone) electrospun fibers. Biomaterials 27:2042–2050

    Article  CAS  PubMed  Google Scholar 

  16. Hrib J, Sirc J, Hobzova R et al (2015) Nanofibers for drug delivery–incorporation and release of model molecules, influence of molecular weight and polymer structure. Beilstein J Nanotechnol 6:1939–1945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Pawar R, Pathan A, Nagaraj S et al (2023) Polycaprolactone and its derivatives for drug delivery. Polym Adv Technol 34:3296–3316

    Article  CAS  Google Scholar 

  18. Bui HT, Chung OH, Dela Cruz J, Park JS (2014) Fabrication and characterization of electrospun curcumin-loaded polycaprolactone-polyethylene glycol nanofibers for enhanced wound healing. Macromol Res 22:1288–1296

    Article  CAS  Google Scholar 

  19. Riaz T, Khenoussi N, Rata DM et al (2021) Blend electrospinning of poly (ɛ-caprolactone) and poly (ethylene glycol-400) nanofibers loaded with ibuprofen as a potential drug delivery system for wound dressings. Autex Res J 23:66–76

    Article  Google Scholar 

  20. Dehghan F, Gholipour-Kanani A, Kamali Dolatabadi M, Bahrami SH (2022) Nanofibrous composite from polycaprolactone-polyethylene glycol-aloe vera as a promising scaffold for bone repairing. J Appl Polym Sci 139:e52463

    Article  CAS  Google Scholar 

  21. Malvisi M, Stuknytė M, Magro G et al (2016) Antibacterial activity and immunomodulatory effects on a bovine mammary epithelial cell line exerted by nisin A-producing Lactococcus lactis strains. J Dairy Sci 99:2288–2296

    Article  CAS  PubMed  Google Scholar 

  22. Zhao P, Xue Y, Gao W et al (2018) Bacillaceae-derived peptide antibiotics since 2000. Peptides 101:10–16

    Article  CAS  PubMed  Google Scholar 

  23. Andersson DI, Hughes D, Kubicek-Sutherland JZ (2016) Mechanisms and consequences of bacterial resistance to antimicrobial peptides. Drug Resist Updat 26:43–57

    Article  CAS  PubMed  Google Scholar 

  24. Heunis TDJ, Smith C, Dicks LMT (2013) Evaluation of a nisin-eluting nanofiber scaffold to treat Staphylococcus aureus-induced skin infections in mice. Antimicrob Agents Chemother 57:3928–3935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Gunes OC, Ziylan Albayrak A (2021) Antibacterial polypeptide nisin containing cotton modified hydrogel composite wound dressings. Polym Bull 78:6409–6428

    Article  CAS  Google Scholar 

  26. Dart A, Sarviya N, Babaie A et al (2023) Highly active nisin coated polycaprolactone electrospun fibers against both Staphylococcus aureus and Pseudomonas aeruginosa. Biomater Adv 154:213641

    Article  CAS  PubMed  Google Scholar 

  27. Arthanari S, Mani G, Jang JH et al (2016) Preparation and characterization of gatifloxacin-loaded alginate/poly (vinyl alcohol) electrospun nanofibers. Artif Cells Nanomed Biotechnol 44:847–852

    CAS  PubMed  Google Scholar 

  28. Wang H, She Y, Chu C et al (2015) Preparation, antimicrobial and release behaviors of nisin-poly (vinyl alcohol)/wheat gluten/ZrO 2 nanofibrous membranes. J Mater Sci 50:5068–5078

    Article  CAS  Google Scholar 

  29. Ibrahim S, Rezk MY, Ismail M et al (2020) Coaxial nanofibers outperform uniaxial nanofibers for the loading and release of pyrroloquinoline quinone (PQQ) for biomedical applications. Nanoscale Adv 2:3341–3349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Vatankhah E (2018) Rosmarinic acid-loaded electrospun nanofibers: in vitro release kinetic study and bioactivity assessment. Eng Life Sci 18:732–742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Charernsriwilaiwat N, Rojanarata T, Ngawhirunpat T et al (2013) Electrospun chitosan-based nanofiber mats loaded with Garcinia mangostana extracts. Int J Pharm 452:333–343

    Article  CAS  PubMed  Google Scholar 

  32. Golkar P, Kalani S, Allafchian AR et al (2019) Fabrication and characterization of electrospun Plantago major seed mucilage/PVA nanofibers. J Appl Polym Sci 136:47852

    Article  Google Scholar 

  33. Chizari M, Khosravimelal S, Tebyaniyan H et al (2022) Fabrication of an antimicrobial peptide-loaded silk fibroin/gelatin bilayer sponge to apply as a wound dressing; an in vitro study. Int J Pept Res Ther 28:1–13

    Article  Google Scholar 

  34. Ali S, Khatri Z, Oh KW et al (2014) Preparation and characterization of hybrid polycaprolactone/cellulose ultrafine fibers via electrospinning. Macromol Res 22:562–568

    Article  CAS  Google Scholar 

  35. Benkaddour A, Jradi K, Robert S, Daneault C (2013) Grafting of polycaprolactone on oxidized nanocelluloses by click chemistry. Nanomaterials 3:141–157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Vrandečić NS, Erceg M, Jakić M, Klarić I (2010) Kinetic analysis of thermal degradation of poly (ethylene glycol) and poly (ethylene oxide) s of different molecular weight. Thermochim Acta 498:71–80

    Article  Google Scholar 

  37. Zeng J, Yang L, Liang Q et al (2005) Influence of the drug compatibility with polymer solution on the release kinetics of electrospun fiber formulation. J Control Release 105:43–51

    Article  CAS  PubMed  Google Scholar 

  38. Taghipour-Sabzevar V, Sharifi T, Bagheri-Khoulenjani S et al (2020) Targeted delivery of a short antimicrobial peptide against CD44-overexpressing tumor cells using hyaluronic acid-coated chitosan nanoparticles: an in vitro study. J Nanopart Res 22:1–16

    Article  Google Scholar 

  39. Kyzioł A, Michna J, Moreno I et al (2017) Preparation and characterization of electrospun alginate nanofibers loaded with ciprofloxacin hydrochloride. Eur Polym J 96:350–360

    Article  Google Scholar 

  40. Fathi HA, Abdelkader A, AbdelKarim MS et al (2020) Electrospun vancomycin-loaded nanofibers for management of methicillin-resistant Staphylococcus aureus-induced skin infections. Int J Pharm 586:119620

    Article  CAS  PubMed  Google Scholar 

  41. Wang Z, Wang H, Xiong J et al (2021) Fabrication and in vitro evaluation of PCL/gelatin hierarchical scaffolds based on melt electrospinning writing and solution electrospinning for bone regeneration. Mater Sci Eng C 128:112287

    Article  CAS  Google Scholar 

  42. Kohsari I, Shariatinia Z, Pourmortazavi SM (2016) Antibacterial electrospun chitosan–polyethylene oxide nanocomposite mats containing bioactive silver nanoparticles. Carbohydr Polym 140:287–298

    Article  CAS  PubMed  Google Scholar 

  43. Alizadeh S, Farshi P, Farahmandian N et al (2023) Synergetic dual antibiotics-loaded chitosan/poly (vinyl alcohol) nanofibers with sustained antibacterial delivery for treatment of XDR bacteria-infected wounds. Int J Biol Macromol 229:22–34

    Article  CAS  PubMed  Google Scholar 

  44. Dheraprasart C, Rengpipat S, Supaphol P, Tattiyakul J (2009) Morphology, release characteristics, and antimicrobial effect of nisin-loaded electrospun gelatin fiber mat. J Food Prot 72:2293–2300

    Article  CAS  PubMed  Google Scholar 

  45. Korsmeyer RW, Gurny R, Doelker E et al (1983) Mechanisms of solute release from porous hydrophilic polymers. Int J Pharm 15:25–35

    Article  CAS  Google Scholar 

  46. Ritger PL, Peppas NA (1987) A simple equation for description of solute release II. Fickian and anomalous release from swellable devices. J Control Release 5:37–42

    Article  CAS  Google Scholar 

  47. Jeckson TA, Neo YP, Sisinthy SP et al (2021) Formulation and characterisation of deferoxamine nanofiber as potential wound dressing for the treatment of diabetic foot ulcer. J Drug Deliv Sci Technol 66:102751

    Article  CAS  Google Scholar 

  48. Aragon J, Costa C, Coelhoso I et al (2019) Electrospun asymmetric membranes for wound dressing applications. Mater Sci Eng C 103:109822

    Article  CAS  Google Scholar 

  49. Zhao Y, Wang H, Zou X et al (2022) Antibacterial vancomycin@ ZIF-8 loaded PVA nanofiber membrane for infected bone repair. Int J Mol Sci 23:5629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Yang Q, Xie Z, Hu J, Liu Y (2021) Hyaluronic acid nanofiber mats loaded with antimicrobial peptide towards wound dressing applications. Mater Sci Eng, C 128:112319

    Article  CAS  Google Scholar 

  51. Garcia EJ, Oldoni TLC, de Alencar SM et al (2012) Antioxidant activity by DPPH assay of potential solutions to be applied on bleached teeth. Braz Dent J 23:22–27

    Article  PubMed  Google Scholar 

  52. Molyneux P (2004) The use of the stable free radical diphenylpicrylhydrazyl (DPPH) for estimating antioxidant activity. Songklanakarin J Sci Technol 26:211–219

    CAS  Google Scholar 

  53. Solaberrieta I, Jiménez A, Cacciotti I, Garrigós MC (2020) Encapsulation of bioactive compounds from aloe vera agrowastes in electrospun poly (ethylene oxide) nanofibers. Polymers 12:1323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Nejatzadeh-Barandozi F (2013) Genetic diversity in Aloe vera accessions from Iran based on agro-morphological, phytochemical and random amplified polymorphic DNA (RAPD) markers. J Med Plant Res 7:1869–1877

    Google Scholar 

  55. Shen Q, Shang N, Li P (2011) In vitro and in vivo antioxidant activity of Bifidobacterium animalis 01 isolated from centenarians. Curr Microbiol 62:1097–1103

    Article  CAS  PubMed  Google Scholar 

  56. Aydogdu A, Sumnu G, Sahin S (2019) Fabrication of gallic acid loaded Hydroxypropyl methylcellulose nanofibers by electrospinning technique as active packaging material. Carbohydr Polym 208:241–250. https://doi.org/10.1016/j.carbpol.2018.12.065

    Article  CAS  PubMed  Google Scholar 

  57. Tajfiroozeh F, Moradi A, Shahidi F et al (2023) Fabrication and characterization of gallic-acid/nisin loaded electrospun core/shell chitosan/polyethylene oxide nanofiberous membranes with free radical scavenging capacity and antimicrobial activity for food packing applications. Food Biosci 53:102529

    Article  CAS  Google Scholar 

  58. Ahmed S, Keniry M, Padilla V et al (2023) Development of pullulan/chitosan/salvianolic acid ternary fibrous membranes and their potential for chemotherapeutic applications. Int J Biol Macromol 250:126187

    Article  CAS  PubMed  Google Scholar 

  59. Dos Santos CA, Dos Santos GR, Soeiro VS et al (2018) Bacterial nanocellulose membranes combined with nisin: a strategy to prevent microbial growth. Cellulose 25:6681–6689

    Article  Google Scholar 

  60. Schnell E, Klinkhammer K, Balzer S et al (2007) Guidance of glial cell migration and axonal growth on electrospun nanofibers of poly-epsilon-caprolactone and a collagen/poly-epsilon-caprolactone blend. Biomaterials 28:3012–3025. https://doi.org/10.1016/j.biomaterials.2007.03.009

    Article  CAS  PubMed  Google Scholar 

  61. Albaugh VL, Mukherjee K, Barbul A (2017) Proline precursors and collagen synthesis: biochemical challenges of nutrient supplementation and wound healing. J Nutr 147:2011–2017. https://doi.org/10.3945/jn.117.256404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Asadi N, Mehdipour A, Ghorbani M et al (2021) A novel multifunctional bilayer scaffold based on chitosan nanofiber/alginate-gelatin methacrylate hydrogel for full-thickness wound healing. Int J Biol Macromol 193:734–747. https://doi.org/10.1016/j.ijbiomac.2021.10.180

    Article  CAS  PubMed  Google Scholar 

  63. Ran L, Peng S-Y, Wang W et al (2022) In vitro and in vivo evaluation of the bioactive nanofibers-encapsulated benzalkonium bromide for accelerating wound repair with MRSA skin infection. Int J Nanomedicine 17:4419–4432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Shi C, Wang C, Liu H et al (2020) Selection of appropriate wound dressing for various wounds. Front Bioeng Biotechnol 8:182

    Article  PubMed  PubMed Central  Google Scholar 

  65. Anumudu C, Hart A, Miri T, Onyeaka H (2021) Recent advances in the application of the antimicrobial peptide nisin in the inactivation of spore-forming bacteria in foods. Molecules 26. https://doi.org/10.3390/molecules26185552

  66. Gut IM, Blanke SR, van der Donk WA (2011) Mechanism of inhibition of Bacillus anthracis spore outgrowth by the lantibiotic nisin. ACS Chem Biol 6:744–752. https://doi.org/10.1021/cb1004178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Koprivnjak T, Peschel A (2011) Bacterial resistance mechanisms against host defense peptides. Cell Mol Life Sci 68:2243–2254

    Article  CAS  PubMed  Google Scholar 

  68. Yu L, Dou S, Ma J et al (2021) An antimicrobial peptide-loaded chitosan/polyethylene oxide nanofibrous membrane fabricated by electrospinning technology. Front Mater 8. https://doi.org/10.3389/fmats.2021.650223

  69. Wenzel M, Senges CHR, Zhang J et al (2015) Antimicrobial peptides from the aurein family form ion-selective pores in Bacillus subtilis. ChemBioChem 16:1101–1108

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors of this study express their gratitude to SRM Central Instrumentation Facility (SCIF), Nanotechnology Research Center (NRC), Department of Translational Medicine and Research (TMR), Research Facility (I, II, III), Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology (SRMIST), Kattankalathur, Tamil Nadu for providing the instrument facilities for various analysis. We are deeply grateful to Synkromax Biotech Pvt Ltd, Chennai, Tamil Nadu for providing valuable suggestions and the apparatus for electrospinning.

Funding

The authors confirm that they have not received any funds, grants, or other assistance for this research work.

Author information

Authors and Affiliations

Authors

Contributions

SS contributed to conceptualization, methodology, validation, formal analysis, investigation, resources, software, data curation, writing-original draft preparation. SR contributed to review and editing, visualization, and supervision of project administration. All authors read and approved the final manuscript.

Corresponding author

Correspondence to S. Rupachandra.

Ethics declarations

Conflict of interests

The authors declare no competing interests.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 899 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silpa, S., Rupachandra, S. Fabrication and in vitro characterization of nisin-incorporated PCL/PEG electrospun nanofibers for wound dressing applications. Polym. Bull. (2024). https://doi.org/10.1007/s00289-024-05305-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00289-024-05305-x

Keywords

Navigation