Skip to main content
Log in

A Comprehensive Review on Biobased Hyperbranched Polymers

  • REVIEW PAPER
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Environmental issues, including climate change and plastic pollution, have compelled scientists to look at alternatives to traditional polymers. Scientists are actively researching biobased hyperbranched polymers, an emerging group of highly branched polymers made from sustainable resources. They are seen as a promising alternative to petrochemical-based polymers. Hyperbranched polymers can be made using single- and double-monomer techniques. This review provides an extensive perspective of the synthesis and properties of biobased hyperbranched polymers made from a variety of renewable starting materials, including starch, lignin, vanillin, levulinic acid, furfurylamine, ferulic acid, citric acid, adipic acid, succinic acid, and tannic acid and various vegetable oils have been investigated till date. Most of these biobased hyperbranched polymers have been created using vegetable oil as their raw materials because numerous vegetable oil derivatives like monoglycerides, polyols, and fatty acids can be potentially used as monomers for the polymer. In the paper, specifics about modified biobased hyperbranched polymers, their composites, nanocomposites, and functionalized versions are highlighted. These materials belong to a class that combines the special characteristics of hyperbranched polymers with the reinforcing and functionalizing effects of fillers like silver, carbon, silicone, clay, etc. Lastly, the paper also discusses the various practical applications of biobased hyperbranched polymers in various industrial sectors and their prospects for the future.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

Data availability

No data is available to this work.

Abbreviations

AESO:

Acrylated epoxidized soybean oil

AIEE:

Aggregation-induced enhanced emission

APTMS:

Aminopropyl trimethoxysilane

BD:

Butanediol

bis-MPA:

2,2-Bis(hydroxymethyl) propionic acid

BPA:

Bisphenol-A

CA:

Citric acid

CHBPU:

Castor oil hyperbranched polyurethanes

CIE:

Clustering-induced emission

CuNFC:

CuO-nanofibrillar

DETA:

Diethanolamine

DGEBA:

Diglycidyl ether epoxy of bisphenol-A

DMM:

Double-monomer methodology

DMPA:

Dimethylol propionic acid

DOP:

Dioctyl phthalate

DOPO:

9,10-Dihydro-9-oxa-10-phosphaphenanthrene-10-oxide

EGSO:

Epoxidized grape seed oil

ETFP-n:

2,5-Furan dicarboxylic acid and trimethylolpropane, biobased hyperbranched epoxy resins

FA:

Fatty acids

FAME:

Fatty acid methyl esters

FDA-E:

Methyl 4,4-bis[5-(aminomethyl) furan-2-yl] pentanoate

FEHBP:

Ferulic acid-based hyperbranched epoxy resin

FEP:

Ferulic acid-based epoxy resin

FRGO:

Functionalized reduced graphene oxide

GO:

Graphene oxide

GSO:

Grapeseed oil

HAP:

Hydroxyapatite

HBGE:

Hyperbranched epoxy

HBGP:

Hyperbranched polyol

HBP:

Hyperbranched polymers

HBPA-g-WSSPS:

Hyperbranched polyamide to form a hyperbranched aminated WSSPS

HBPE:

Hyperbranched polyesters

HBPP:

Hyperbranched polyester polyols

HBPU:

Hyperbranched polyurethanes

HBTPU:

Hyperbranched thermoplastic polyurethanes

HPBCA:

Citric acid-based hyperbranched polyester

HPG:

Hyperbranched polyglycerol

HyBP:

Hyperbranched polyol

IPDI:

Isophorone diisocyanate

ITA:

Itaconic anhydride

ITA-HBP:

Itaconic anhydride hyperbranched polymer

JO:

Jatropha oil

LPU:

Linear polyurethane

M2HB:

Methyl 13,14-dihydroxy behenate

M2HS:

Methyl 9,10-dihydroxy stearate

M3HS:

Methyl 9, 10, and 11-trihydroxystearate

MDI:

4,40-Diphenylmethane diisocyanate

MHBPU:

Messua. ferrea L. oil hyperbranched polyurethanes

MR:

Methyl ricinoleate

MUF:

Melamine–urea–formaldehyde

MWCNT:

Multiwall carbon nanotube

NC:

Nanocomposites

PA:

Protocatechuic acid

PAM:

Polyacrylamide

PCF:

Pure carbon fiber fabric

PCL:

Poly(e-caprolactone) diol

PENTA:

Pentaerythritol

PHB:

Polyhydroxy butyrate

PO:

Pongamia oil

POH:

Pongamia oil hydroxyl

PTP:

Proton-transfer polymerization

PU:

Polyurethane

PU-COHBPs:

Castor oil-based hyperbranched polyol-based polyurethane

PU-COs:

Castor oil-based polyurethane

rGO:

Reduced graphene oxide

SA:

Succinic anhydride

SBO:

Soybean oil

SCROP:

Self-condensing ring-opening polymerization

SCVP:

Self-condensing vinyl polymerization

SHBPU:

Sunflower oil hyperbranched polyurethanes

SMM:

Single-monomer methodology

SP:

Soy protein

SPU:

Soya bean oil hyperbranched polyurethane

SRGO:

Sulfur decorated reduced graphene oxide

STFP-n:

Thiol-ended hyperbranched polyesters

TA:

Tannic acid

TAHAs:

Tannic acid-based hyperbranched methacrylates

TCA-HBSi:

Tannic acid-based hyperbranched polysiloxane

TDI:

Toluene diisocyanate

TEA-f-MWCNT:

Triethanolamine functionalized multi-walled carbon nanotube

TGA:

Triglycidylamine

TPPs:

Tung oil-based hyperbranched esters

TPU:

Thermoplastic polyurethanes

VA:

Vanillic acid

VO:

Vegetable oil

WHBP:

Waterborne hyperbranched polyester

WSSPS:

Water-soluble soybean polysaccharide

References

  1. Jikei M, Kakimoto M-A (2001) Hyperbranched polymers: a promising new class of materials. Prog Polym Sci 26(8):1233–1285

    Article  CAS  Google Scholar 

  2. Voit B (2000) New developments in hyperbranched polymers. J Polym Sci Part A: Polym Chem 38(14):2505–2525

    Article  CAS  Google Scholar 

  3. Zheng Y, Li S, Weng Z, Gao C (2015) Hyperbranched polymers: advances from synthesis to applications. Chem Soc Rev 44:4091–4130. https://doi.org/10.1039/c4cs00528g

    Article  CAS  PubMed  Google Scholar 

  4. Saadati A, Hasanzadeh M, Seidi F (2021) Biomedical application of hyperbranched polymers: recent advances and challenges. TrAC—Trends Anal Chem 142:116308. https://doi.org/10.1016/j.trac.2021.116308

    Article  CAS  Google Scholar 

  5. Kavand A, Anton N, Vandamme T, Serra CA, Chan-Seng D (2020) Synthesis and functionalization of hyperbranched polymers for targeted drug delivery. J Control Release 321:285–311. https://doi.org/10.1016/j.jconrel.2020.02.019

    Article  CAS  PubMed  Google Scholar 

  6. Gurunathan T, Mohanty S, Nayak SK (2016) Hyperbranched polymers for coating applications: a review. Polym Plast Technol Eng 55:92–117. https://doi.org/10.1080/03602559.2015.1021482

    Article  CAS  Google Scholar 

  7. Suraj Belgaonkar M, Kandasubramanian B (2021) Hyperbranched polymer-based nanocomposites: synthesis, progress, and applications. Eur Polym J 147:110301. https://doi.org/10.1016/j.eurpolymj.2021.110301

    Article  CAS  Google Scholar 

  8. Kurniasih IN, Keilitz J, Haag R (2015) Dendritic nanocarriers based on hyperbranched polymers. Chem Soc Rev 44:4145–4164. https://doi.org/10.1039/c4cs00333k

    Article  CAS  PubMed  Google Scholar 

  9. Wu W, Tang R, Li Q, Li Z (2015) Functional hyperbranched polymers with advanced optical, electrical and magnetic properties. Chem Soc Rev 44:3997–4022. https://doi.org/10.1039/c4cs00224e

    Article  CAS  PubMed  Google Scholar 

  10. Cuneo T, Gao H (2020) Recent advances on synthesis and biomaterials applications of hyperbranched polymers. Wiley Interdiscip Rev Nanomed Nanobiotechnol 12(6):e1640. https://doi.org/10.1002/wnan.1640

    Article  PubMed  Google Scholar 

  11. Wang D, Jin Y, Zhu X, Yan D (2017) Synthesis and applications of stimuli-responsive hyperbranched polymers. Prog Polym Sci 64:114–153. https://doi.org/10.1016/j.progpolymsci.2016.09.005

    Article  CAS  Google Scholar 

  12. Jin H, Huang W, Zhu X, Zhou Y, Yan D (2012) Biocompatible or biodegradable hyperbranched polymers: from self-assembly to cytomimetic applications. Chem Soc Rev 41:5986–5997. https://doi.org/10.1039/c2cs35130g

    Article  CAS  PubMed  Google Scholar 

  13. Hult A, Malmström E (1997) Hyperbranched polymers. J Macromol Sci, Part C: Polym Rev 37(3):555–579

    Article  Google Scholar 

  14. Voit BI, Lederer A (2009) Hyperbranched and highly branched polymer architectures-synthetic strategies and major characterization aspects. Chem Rev 109:5924–5973. https://doi.org/10.1021/cr900068q

    Article  CAS  PubMed  Google Scholar 

  15. Gao C, Yan D (2004) Hyperbranched polymers: from synthesis to applications. Prog Polym Sci (Oxf) 29:183–275. https://doi.org/10.1016/j.progpolymsci.2003.12.002

    Article  CAS  Google Scholar 

  16. Goodwin SR, Stimpson A, Moon R, Cowie L, Aragrag N, Filip SV, Smith AG, Irvine DJ (2022) Facile synthesis of functionalised hyperbranched polymers for application as novel Low Viscosity Lubricant Formulation Components. Polymers (Basel) 14(18):3841. https://doi.org/10.3390/polym14183841

    Article  CAS  PubMed  Google Scholar 

  17. Zhang Y, Yu W (2022) Synthesis of hyperbranched polymers and prospects for application in oilfield chemistry. Front Energy Res 10:894096. https://doi.org/10.3389/fenrg.2022.894096

    Article  Google Scholar 

  18. Garrison TF, Murawski A, Quirino RL (2016) Bio-based polymers with potential for biodegradability. Polymers (Basel) 8(7):262. https://doi.org/10.3390/polym8070262

    Article  CAS  PubMed  Google Scholar 

  19. Chen B, Liao M, Sun J, Shi S (2023) A novel biomass polyurethane-based composite coating with superior radiative cooling, anti-corrosion and recyclability for surface protection. Prog Org Coat. https://doi.org/10.1016/j.porgcoat.2022.107250

    Article  Google Scholar 

  20. Avella M, Buzarovska A, Errico ME, Gentile G, Grozdanov A (2009) Eco-challenges of bio-based polymer composites. Materials 2:911–925. https://doi.org/10.3390/ma2030911

    Article  CAS  PubMed Central  Google Scholar 

  21. Nakajima H, Dijkstra P, Loos K (2017) The recent developments in biobased polymers toward general and engineering applications: polymers that are upgraded from biodegradable polymers, analogous to petroleum-derived polymers, and newly developed. Polymers (Basel) 9(10):523. https://doi.org/10.3390/polym9100523

    Article  CAS  PubMed  Google Scholar 

  22. Chinthapalli R, Skoczinski P, Carus M, Baltus W, De Guzman D, Käb H, Raschka A, Ravenstijn J (2019) Biobased building blocks and polymers—global capacities, production and trends, 2018–2023. Ind Biotechnol 15:237–241. https://doi.org/10.1089/ind.2019.29179.rch

    Article  Google Scholar 

  23. Iwata T (2015) Biodegradable and bio-based polymers: Future prospects of eco-friendly plastics. Angewandte Chemie—Int Edit 54:3210–3215. https://doi.org/10.1002/anie.201410770

    Article  CAS  Google Scholar 

  24. Babu RP, O’connor K, Seeram R (2013) Current progress on bio-based polymers and their future trends. Prog biomater 2:1–16

    Article  Google Scholar 

  25. Kalita H, Karak N (2012) Mesua ferrea L. seed oil-based hyperbranched shape memory polyurethanes: effect of multifunctional component. Polym Eng Sci 52(11):2454–2461. https://doi.org/10.1002/pen.23200

    Article  CAS  Google Scholar 

  26. Thakur S, Karak N (2013) Castor oil-based hyperbranched polyurethanes as advanced surface coating materials. Prog Org Coat 76:157–164. https://doi.org/10.1016/j.porgcoat.2012.09.001

    Article  CAS  Google Scholar 

  27. Das B, Konwar U, Mandal M, Karak N (2013) Sunflower oil based biodegradable hyperbranched polyurethane as a thin film material. Ind Crops Prod 44:396–404. https://doi.org/10.1016/j.indcrop.2012.11.028

    Article  CAS  Google Scholar 

  28. Chaudhari AB, Tatiya PD, Hedaoo RK, Kulkarni RD, Gite VV (2013) Polyurethane prepared from neem oil polyesteramides for self-healing anticorrosive coatings. Ind Eng Chem Res 52:10189–10197. https://doi.org/10.1021/ie401237s

    Article  CAS  Google Scholar 

  29. Kong X, Narine SS (2007) Physical properties of polyurethane plastic sheets produced from polyols from canola oil. Biomacromol 8:2203–2209. https://doi.org/10.1021/bm070016i

    Article  CAS  Google Scholar 

  30. Ahmed Mohammed I, Abbas E, Al-Mulla J, Khizien N, Kadar A, Ibrahim M (2013) Structure-property studies of thermoplastic and thermosetting polyurethanes using palm and soya oils-based polyols. J Oleo Sci 62(12):1059–1072

    Article  Google Scholar 

  31. Hayes GC, Becer CR (2020) Levulinic acid: a sustainable platform chemical for novel polymer architectures. Polym Chem 11:4068–4077. https://doi.org/10.1039/D0PY00705F

    Article  CAS  Google Scholar 

  32. Yang ML, Wu YX, Liu Y, Qiu JJ, Liu CM (2019) A novel bio-based AB2 monomer for preparing hyperbranched polyamides derived from levulinic acid and furfurylamine. Polym Chem 10:6217–6226. https://doi.org/10.1039/c9py01253b

    Article  CAS  Google Scholar 

  33. Zhong L, Hao Y, Zhang J, Wei F, Li T, Miao M, Zhang D (2022) Closed-loop recyclable fully bio-based epoxy vitrimers from ferulic acid-derived hyperbranched epoxy resin. Macromolecules 55:595–607. https://doi.org/10.1021/acs.macromol.1c02247

    Article  CAS  Google Scholar 

  34. Duarah R, Karak N (2015) A starch based sustainable tough hyperbranched epoxy thermoset. RSC Adv 5:64456–64465. https://doi.org/10.1039/c5ra09955b

    Article  CAS  Google Scholar 

  35. Hao Y, Zhong L, Li T, Zhang J, Zhang D (2023) High-performance recyclable and malleable epoxy resin with vanillin-based hyperbranched epoxy resin containing dual dynamic bonds. ACS Sustain Chem Eng 11:11077–11087. https://doi.org/10.1021/acssuschemeng.3c01337

    Article  CAS  Google Scholar 

  36. Longe L, Garnier G, Saito K (2019) Synthesis of lignin-based phenol terminated hyperbranched polymer. Molecules 24(20):3717. https://doi.org/10.3390/molecules24203717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Liu R, Zhu J, Luo J, Liu X (2014) Synthesis and application of novel UV-curable hyperbranched methacrylates from renewable natural tannic acid. Prog Org Coat 77:30–37. https://doi.org/10.1016/j.porgcoat.2013.07.015

    Article  CAS  Google Scholar 

  38. Stumbé JF, Bruchmann B (2004) Hyperbranched polyesters based on adipic acid and glycerol. Macromol Rapid Commun 25:921–924. https://doi.org/10.1002/marc.200300298

    Article  CAS  Google Scholar 

  39. Jin T, Zeng H, Huang Y, Liu L, Yao W, Lei H, Shi S, Du G, Zhang L (2023) Bio-hyperbranched polyesters synthesized from citric acid and bio-polyols and applications on wood adhesives. Polym Test 120:107974. https://doi.org/10.1016/j.polymertesting.2023.107974

    Article  CAS  Google Scholar 

  40. Testud B, Pintori D, Grau E, Taton D, Cramail H (2017) Hyperbranched polyesters by polycondensation of fatty acid-based AB: N-type monomers. Green Chem 19:259–269. https://doi.org/10.1039/c6gc02294d

    Article  CAS  Google Scholar 

  41. Sharma A (ed) (2022) Nanocomposite materials for biomedical and energy storage applications. Rijeka, IntechOpen. https://doi.org/10.5772/intechopen.95130

    Book  Google Scholar 

  42. Bayan R, Karak N (2018) Bio-derived aliphatic hyperbranched polyurethane nanocomposites with inherent self healing tendency and surface hydrophobicity: towards creating high performance smart materials. Compos Part A Appl Sci Manuf 110:142–153. https://doi.org/10.1016/j.compositesa.2018.04.024

    Article  CAS  Google Scholar 

  43. Karak N, Konwarh R, Voit B (2010) Catalytically active vegetable-oil-based thermoplastic hyperbranched polyurethane/silver nanocomposites. Macromol Mater Eng 295:159–169. https://doi.org/10.1002/mame.200900211

    Article  CAS  Google Scholar 

  44. Hazarika D, Karak N (2019) Nanocomposite of waterborne hyperbranched polyester and clay@carbon dot as a robust photocatalyst for environmental remediation. Appl Surf Sci 498:143832. https://doi.org/10.1016/j.apsusc.2019.143832

    Article  CAS  Google Scholar 

  45. Rafiee Z, Omidi S (2022) Modification of carbon-based nanomaterials by polyglycerol: recent advances and applications. RSC Adv 12:181–192. https://doi.org/10.1039/D1RA07554C

    Article  CAS  Google Scholar 

  46. Deka H, Karak N (2011) Rheological study of vegetable oil based hyperbranched polyurethane/multi-walled carbon nanotube nanocomposites. Polym Plast Technol Eng 50:797–803. https://doi.org/10.1080/03602559.2011.551968

    Article  CAS  Google Scholar 

  47. Ahmadi Y, Ahmad S (2019) Formulation of a promising antimicrobial and anticorrosive bi-functional boronated hyperbranched oleo-polyurethane composite coating through the exploitation of functionalized reduced graphene oxide as chain extender. Appl Surf Sci 494:196–210. https://doi.org/10.1016/j.apsusc.2019.07.138

    Article  CAS  Google Scholar 

  48. Ratner BD (2013) Biomaterials Science, Elsevier. https://doi.org/10.1016/C2009-0-02433-7

  49. Miao S, Sun L, Wang P, Liu R, Su Z, Zhang S (2012) Soybean oil-based polyurethane networks as candidate biomaterials: synthesis and biocompatibility. Eur J Lipid Sci Technol 114:1165–1174. https://doi.org/10.1002/ejlt.201200050

    Article  CAS  Google Scholar 

  50. Tenorio-Alfonso A, Sánchez MC, Franco JM (2020) A review of the sustainable approaches in the production of bio-based polyurethanes and their applications in the adhesive field. J Polym Environ 28:749–774. https://doi.org/10.1007/s10924-020-01659-1

    Article  CAS  Google Scholar 

  51. Sharmin E, Zafar F, Akram D, Alam M, Ahmad S (2015) Recent advances in vegetable oils based environment friendly coatings: a review. Ind Crops Prod 76:215–229. https://doi.org/10.1016/j.indcrop.2015.06.022

    Article  CAS  Google Scholar 

  52. Paraskar PM, Prabhudesai MS, Hatkar VM, Kulkarni RD (2021) Vegetable oil based polyurethane coatings—a sustainable approach: a review. Prog Org Coat. https://doi.org/10.1016/j.porgcoat.2021.106267

    Article  Google Scholar 

  53. Desroches M, Escouvois M, Auvergne R, Caillol S, Boutevin B (2012) From vegetable oils to polyurethanes: synthetic routes to polyols and main industrial products. Polym Rev 52:38–79. https://doi.org/10.1080/15583724.2011.640443

    Article  CAS  Google Scholar 

  54. Petrovic ZS (2008) Polyurethanes from vegetable oils. Polym Rev 48:109–155. https://doi.org/10.1080/15583720701834224

    Article  CAS  Google Scholar 

  55. Cywar RM, Rorrer NA, Hoyt CB, Beckham GT, Chen EYX (2022) Bio-based polymers with performance-advantaged properties. Nat Rev Mater 7:83–103. https://doi.org/10.1038/s41578-021-00363-3

    Article  CAS  Google Scholar 

  56. Zhang C, Madbouly SA, Kessler MR (2015) Biobased polyurethanes prepared from different vegetable oils. ACS Appl Mater Interfaces 7:1226–1233. https://doi.org/10.1021/am5071333

    Article  CAS  PubMed  Google Scholar 

  57. Abbina S, Vappala S, Kumar P, Siren EMJ, La CC, Abbasi U, Brooks DE, Kizhakkedathu JN (2017) Hyperbranched polyglycerols: recent advances in synthesis, biocompatibility and biomedical applications. J Mater Chem B 5:9249–9277. https://doi.org/10.1039/c7tb02515g

    Article  CAS  PubMed  Google Scholar 

  58. Dutta S, Karak N (2006) Effect of the NCO/OH ratio on the properties of Mesua Ferrea L. seed oil-modified polyurethane resins. Polym Int 55:49–56. https://doi.org/10.1002/pi.1914

    Article  CAS  Google Scholar 

  59. Nitbani FO, Tjitda PJP, Nurohmah BA, Wogo HE (2020) Preparation of fatty acid and monoglyceride from vegetable oil. J Oleo Sci 69:277–295. https://doi.org/10.5650/jos.ess19168

    Article  CAS  PubMed  Google Scholar 

  60. Dutta N, Karak N, Dolui SK (2004) Synthesis and characterization of polyester resins based on nahar seed oil. Prog Org Coat 49:146–152. https://doi.org/10.1016/j.porgcoat.2003.09.005

    Article  CAS  Google Scholar 

  61. Kalita H, Karak N (2012) Bio-based elastomeric hyperbranched polyurethanes for shape memory application. Iran Polym J (Engl Ed) 21:263–271. https://doi.org/10.1007/s13726-012-0025-2

    Article  CAS  Google Scholar 

  62. Kalita H, Karak N (2014) Biobased hyperbranched shape-memory polyurethanes: effect of different vegetable oils. J Appl Polym Sci 131(1):39579. https://doi.org/10.1002/app.39579

    Article  CAS  Google Scholar 

  63. Ghosh T, Karak N (2018) Biobased multifunctional macroglycol containing smart thermoplastic hyperbranched polyurethane elastomer with intrinsic self-healing attribute. ACS Sustain Chem Eng 6:4370–4381. https://doi.org/10.1021/acssuschemeng.8b00001

    Article  CAS  Google Scholar 

  64. Deka H, Karak N (2010) Shape-memory property and characterization of epoxy resin-modified Mesua ferrea L. seed oil-based hyperbranched polyurethane. J Appl Polym Sci 116:106–115. https://doi.org/10.1002/app.31516

    Article  CAS  Google Scholar 

  65. Kalita H, Karak N (2014) Bio-based hyperbranched polyurethane/multi-walled carbon nanotube nanocomposites as shape memory materials. Polym Compos 35:636–643. https://doi.org/10.1002/pc.22705

    Article  CAS  Google Scholar 

  66. Thakur S, Karak N (2013) Bio-based tough hyperbranched polyurethane-graphene oxide nanocomposites as advanced shape memory materials. RSC Adv 3:9476–9482. https://doi.org/10.1039/c3ra40801a

    Article  CAS  Google Scholar 

  67. Kalita H, Karak N (2013) Epoxy modified bio-based hyperbranched polyurethane thermosets. Des Monomers Polym 16:447–455. https://doi.org/10.1080/15685551.2012.747163

    Article  CAS  Google Scholar 

  68. Thakur S, Barua S, Karak N (2015) Self-healable castor oil based tough smart hyperbranched polyurethane nanocomposite with antimicrobial attributes. RSC Adv 5:2167–2176. https://doi.org/10.1039/c4ra11730a

    Article  CAS  Google Scholar 

  69. Wei D, Liao B, Yong Q, Wang H, Li T, Huang J, Pang H (2019) Castor oil-based waterborne hyperbranched polyurethane acrylate emulsion for UV-curable coatings with excellent chemical resistance and high hardness. J Coat Technol Res 16:415–428. https://doi.org/10.1007/s11998-018-0120-1

    Article  CAS  Google Scholar 

  70. Thakur S, Karak N (2015) A tough, smart elastomeric bio-based hyperbranched polyurethane nanocomposite. New J Chem 39:2146–2154. https://doi.org/10.1039/c4nj01989j

    Article  CAS  Google Scholar 

  71. Gogoi S, Karak N (2015) Bio-based high-performance waterborne hyperbranched polyurethane thermoset. Polym Adv Technol 26:589–596. https://doi.org/10.1002/pat.3490

    Article  CAS  Google Scholar 

  72. Patil AM, Jirimali HD, Gite VV, Jagtap RN (2020) Synthesis and performance of bio-based hyperbranched polyol in polyurethane coatings. Prog Org Coat 149:105895. https://doi.org/10.1016/j.porgcoat.2020.105895

    Article  CAS  Google Scholar 

  73. Karak N (2002) Bio‐based hyperbranched polyurethane nanocomposites. In: Mark HF (ed) Encyclopedia of Polymer Science and Technology. Wiley, New jersey, pp 1–35. https://doi.org/10.1002/0471440264.pst638

    Chapter  Google Scholar 

  74. Deka H, Karak N, Kalita RD, Buragohain AK (2010) Bio-based thermostable, biodegradable and biocompatible hyperbranched polyurethane/Ag nanocomposites with antimicrobial activity. Polym Degrad Stab 95:1509–1517. https://doi.org/10.1016/j.polymdegradstab.2010.06.017

    Article  CAS  Google Scholar 

  75. Das B, Mandal M, Upadhyay A, Chattopadhyay P, Karak N (2013) Bio-based hyperbranched polyurethane/Fe3O4 nanocomposites: smart antibacterial biomaterials for biomedical devices and implants. Biomed Mater (Bristol) 8(3):035003. https://doi.org/10.1088/1748-6041/8/3/035003

    Article  CAS  Google Scholar 

  76. Gogoi S, Karak N (2016) Biobased waterborne hyperbranched polyurethane/NiFe2O4@rGO nanocomposite with multi-stimuli responsive shape memory attributes. RSC Adv 6:94815–94825. https://doi.org/10.1039/c6ra16848e

    Article  CAS  Google Scholar 

  77. Ghosh T, Karak N (2018) Silicone-containing biodegradable smart elastomeric thermoplastic hyperbranched polyurethane. ACS Omega 3:6849–6859. https://doi.org/10.1021/acsomega.8b00734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Cheng Z, Li Q, Yan Z, Liao G, Zhang B, Yu Y, Yi C, Xu Z (2019) Design and synthesis of novel aminosiloxane crosslinked linseed oil-based waterborne polyurethane composites and its physicochemical properties. Prog Org Coat 127:194–201. https://doi.org/10.1016/j.porgcoat.2018.11.020

    Article  CAS  Google Scholar 

  79. Das B, Chattopadhyay P, Mishra D, Maiti TK, Maji S, Narayan R, Karak N (2013) Nanocomposites of bio-based hyperbranched polyurethane/funtionalized MWCNT as non-immunogenic, osteoconductive, biodegradable and biocompatible scaffolds in bone tissue engineering. J Mater Chem B 1:4115–4126. https://doi.org/10.1039/c3tb20693a

    Article  CAS  PubMed  Google Scholar 

  80. Kalita H, Karak N (2014) Bio-based hyperbranched thermosetting polyurethane/triethanolamine functionalized multi-walled carbon nanotube nanocomposites as shape memory materials. J Nanosci Nanotechnol 14:5435–5442. https://doi.org/10.1166/jnn.2014.8749

    Article  CAS  PubMed  Google Scholar 

  81. Das B, Chattopadhyay P, Upadhyay A, Gupta K, Mandal M, Karak N (2014) Biophysico-chemical interfacial attributes of Fe3O4 decorated MWCNT nanohybrid/bio-based hyperbranched polyurethane nanocomposite: an antibacterial wound healing material with controlled drug release potential. New J Chem 38:4300–4311. https://doi.org/10.1039/c4nj00732h

    Article  CAS  Google Scholar 

  82. Thakur S, Karak N (2014) Ultratough, ductile, castor oil-based, hyperbranched, polyurethane nanocomposite using functionalized reduced graphene oxide. ACS Sustain Chem Eng 2:1195–1202. https://doi.org/10.1021/sc500165d

    Article  CAS  Google Scholar 

  83. Das G, Kalita RD, Deka H, Buragohain AK, Karak N (2013) Biodegradation, cytocompatability and performance studies of vegetable oil based hyperbranched polyurethane modified biocompatible sulfonated epoxy resin/clay nanocomposites. Prog Org Coat 76:1103–1111. https://doi.org/10.1016/j.porgcoat.2013.03.007

    Article  CAS  Google Scholar 

  84. Deka H, Karak N (2011) Bio-based hyperbranched polyurethane/clay nanocomposites: adhesive, mechanical, and thermal properties. Polym Adv Technol 22:973–980. https://doi.org/10.1002/pat.1603

    Article  CAS  Google Scholar 

  85. Deka H, Karak N (2009) Vegetable oil-based hyperbranched thermosetting polyurethane/clay nanocomposites. Nanoscale Res Lett 4:758–765. https://doi.org/10.1007/s11671-009-9313-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Wypych A (2018) Databook of adhesion promoters. Elsevier, Amsterdam. https://doi.org/10.1016/B978-1-927885-27-7.50026-0

    Book  Google Scholar 

  87. Alagi P, Choi YJ, Hong SC (2016) Preparation of vegetable oil-based polyols with controlled hydroxyl functionalities for thermoplastic polyurethane. Eur Polym J 78:46–60. https://doi.org/10.1016/j.eurpolymj.2016.03.003

    Article  CAS  Google Scholar 

  88. Alagi P, Hong SC (2015) Vegetable oil-based polyols for sustainable polyurethanes. Macromol Res 23:1079–1086. https://doi.org/10.1007/s13233-015-3154-6

    Article  CAS  Google Scholar 

  89. Petrović ZS, Cvetković I, Milić J, Hong D, Javni I (2012) Hyperbranched polyols from hydroformylated methyl soyate. J Appl Polym Sci 125:2920–2928. https://doi.org/10.1002/app.36232

    Article  CAS  Google Scholar 

  90. Milic J, Teraoka I, Petrovic ZS (2012) Solution properties of biobased hyperbranched polyols investigated by multiple-detection size exclusion chromatography. J Appl Polym Sci. https://doi.org/10.1002/app.36800

    Article  Google Scholar 

  91. Ji D, Fang Z, He W, Luo Z, Jiang X, Wang T, Guo K (2015) Polyurethane rigid foams formed from different soy-based polyols by the ring opening of epoxidised soybean oil with methanol, phenol, and cyclohexanol. Ind Crops Prod 74:76–82. https://doi.org/10.1016/j.indcrop.2015.04.041

    Article  CAS  Google Scholar 

  92. Yang Z, Feng Y, Liang H, Yang Z, Yuan T, Luo Y, Li P, Zhang C (2017) A solvent-free and scalable method to prepare soybean-oil-based polyols by thiol-ene photo-click reaction and biobased polyurethanes therefrom. ACS Sustain Chem Eng 5:7365–7373. https://doi.org/10.1021/acssuschemeng.7b01672

    Article  CAS  Google Scholar 

  93. Hoyle CE, Bowman CN (2010) Thiol-ene click chemistry. Angewandte Chemie—Int Ed 49:1540–1573. https://doi.org/10.1002/anie.200903924

    Article  CAS  Google Scholar 

  94. Lee JH, Park CK, Jung JS, Kim SH (2022) Synthesis of vegetable oil-based hyperbranched polyol via thiol-yne click reaction and their application in polyurethane. Prog Org Coat 164:106700. https://doi.org/10.1016/j.porgcoat.2021.106700

    Article  CAS  Google Scholar 

  95. Zlatanić A, Javni I, Ionescu M, Bilić N, Petrović ZS (2015) Polyurethane molded foams with high content of hyperbranched polyols from soybean oil. J Cell Plast 51:289–306. https://doi.org/10.1177/0021955X14537660

    Article  CAS  Google Scholar 

  96. Patil AM, Gite VV, Jirimali HD, Jagtap RN (2021) Fully biobased nanocomposites of hyperbranched-polyol and hydroxyapatite in coating applications. J Polym Environ 29:799–810. https://doi.org/10.1007/s10924-020-01903-8

    Article  CAS  Google Scholar 

  97. Singh AP, Suryanarayana C, Baloji Naik R, Gunasekaran G (2016) Development of hyperbranched polyester polyol-based waterborne anticorrosive coating. J Coat Technol Res 13:41–51. https://doi.org/10.1007/s11998-015-9720-1

    Article  CAS  Google Scholar 

  98. Patil AM, Jirimali HD, Jagtap RN (2020) Study of coating performance of bio-based hyperbranched polyester polyol/graphene oxide composites in PU-coating. J Macromol Sci Part A Pure Appl Chem 58:81–89. https://doi.org/10.1080/10601325.2020.1826330

    Article  CAS  Google Scholar 

  99. Sandoval NA, Cruz AP, Murillo EA (2020) Evaluation of a hyperbranched polyester polyol as plasticizing agent for composites of recycled polystyrene and rice husk. J Phys Conf Ser. https://doi.org/10.1088/1742-6596/1587/1/012011

    Article  Google Scholar 

  100. Khannanov AA, Rossova AA, Ignatyeva KA, Ulakhovich NA, Gerasimov AV, Boldyrev AE, Evtugyn VG, Rogov AM, Cherosov MA, Gilmutdinov IF, Kutyreva MP (2022) Superparamagnetic cobalt nanoparticles in hyperbranched polyester polyol matrix with anti-protease activity. J Magn Magn Mater 547:168808. https://doi.org/10.1016/j.jmmm.2021.168808

    Article  CAS  Google Scholar 

  101. Gunawan NR, Tessman M, Schreiman AC, Simkovsky R, Samoylov AA, Neelakantan NK, Bemis TA, Burkart MD, Pomeroy RS, Mayfield SP (2020) Rapid biodegradation of renewable polyurethane foams with identification of associated microorganisms and decomposition products. Bioresour Technol Rep 11:100513. https://doi.org/10.1016/j.biteb.2020.100513

    Article  Google Scholar 

  102. US patent US20140221696A1. Polyglycerol based polyols and polyurethanes and methods for producing polyols and polyurethanes. https://patents.google.com/patent/US20140221696A1/en. https://patentimages.storage.googleapis.com/04/91/01/096983363629a8/US20140221696A1.pdf

  103. Hu M, Chen M, Li G, Pang Y, Wang D, Wu J, Qiu F, Zhu X, Sun J (2012) Biodegradable hyperbranched polyglycerol with ester linkages for drug delivery. Biomacromol 13:3552–3561. https://doi.org/10.1021/bm300966d

    Article  CAS  Google Scholar 

  104. Daniel W, Stiriba SE, Holger F (2010) Hyperbranched polyglycerols: From the controlled synthesis of biocompatible polyether polyols to multipurpose applications. Acc Chem Res 43:129–141. https://doi.org/10.1021/ar900158p

    Article  CAS  Google Scholar 

  105. Jafari M, Abolmaali SS, Najafi H, Tamaddon AM (2020) Hyperbranched polyglycerol nanostructures for anti-biofouling, multifunctional drug delivery, bioimaging and theranostic applications. Int J Pharm 576:118959. https://doi.org/10.1016/j.ijpharm.2019.118959

    Article  CAS  PubMed  Google Scholar 

  106. Gade SM, Munshi MK, Chherawalla BM, Rane VH, Kelkar AA (2012) Synthesis of glycidol from glycerol and dimethyl carbonate using ionic liquid as a catalyst. Catal Commun 27:184–188. https://doi.org/10.1016/j.catcom.2012.07.003

    Article  CAS  Google Scholar 

  107. Lee KW, Chung JW, Kwak SY (2016) Synthesis and characterization of bio-based alkyl terminal hyperbranched polyglycerols: a detailed study of their plasticization effect and migration resistance. Green Chem, R Soc Chem 18(4):999–1009. https://doi.org/10.1039/c5gc02402a

    Article  CAS  Google Scholar 

  108. Albertsson A-C, Varma IK (2002) Aliphatic polyesters: synthesis, properties and applications. In: Degradable aliphatic polyesters. Advances in polymer science, vol 157. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45734-8_1

  109. Hazarika D, Karak N (2015) Waterborne sustainable tough hyperbranched aliphatic polyester thermosets. ACS Sustain Chem Eng 3:2458–2568. https://doi.org/10.1021/acssuschemeng.5b00494

    Article  CAS  Google Scholar 

  110. Kunduru KR, Basu A, Haim Zada M, Domb AJ (2015) Castor oil-based biodegradable polyesters. Biomacromol 16:2572–2587. https://doi.org/10.1021/acs.biomac.5b00923

    Article  CAS  Google Scholar 

  111. Alam M, Shaik MR, Alandis NM (2013) Vegetable-oil-based hyperbranched polyester-styrene copolymer containing silver nanoparticle as antimicrobial and corrosion-resistant coating materials. J Chem. https://doi.org/10.1155/2013/962316

    Article  Google Scholar 

  112. Testud B (2015) Vegetable oils as a platform for the design of novel Hyperbranched Polyesters. Polymers. Université de Bordeaux, 2015. English. ffNNT: 2015BORD0365ff. fftel-01673788v2f. https://theses.hal.science/tel-01673788v2

  113. Zhang K, Cheng XP, Cheng F, Lin Y, Zhou M, Zhu PX (2018) Poly (citrate glyceride): a hyperbranched polyester for starch plasticization. Polym Int 67:399–404. https://doi.org/10.1002/pi.5520

    Article  CAS  Google Scholar 

  114. Mamajanov I, Callahan MP, Dworkin JP, Cody GD (2015) Prebiotic alternatives to proteins: structure and function of hyperbranched polyesters. Orig Life Evol Biosph 45:123–137. https://doi.org/10.1007/s11084-015-9430-9

    Article  CAS  PubMed  Google Scholar 

  115. Hazarika D, Karak N (2018) Biobased waterborne, tough hyperbranched polyester thermosets as environmentally benign polymeric materials. J Appl Polym Sci 135(41):46738. https://doi.org/10.1002/app.46738

    Article  CAS  Google Scholar 

  116. Mamajanov I, Cody GD (2017) Protoenzymes: The case of hyperbranched polyesters. Philos Trans R Soc A: Math, Phys Eng Sci 375(2109):20160357. https://doi.org/10.1098/rsta.2016.0357

    Article  CAS  Google Scholar 

  117. Zhang T, Howell BA, Smith PB (2015) Thermal degradation of glycerol/adipic acid hyperbranched poly (ester)s containing either hydroxyl or carboxyl end-groups. J Therm Anal Calorim 122:1221–1229. https://doi.org/10.1007/s10973-015-5064-4

    Article  CAS  Google Scholar 

  118. Beardslee T, Picataggio S (2012) Bio-based adipic acid from renewable oils. Lipid Technol 24:223–225. https://doi.org/10.1002/lite.201200230

    Article  CAS  Google Scholar 

  119. Li H, Sivasankarapillai G, McDonald AG (2015) Highly biobased thermally-stimulated shape memory copolymeric elastomers derived from lignin and glycerol-adipic acid based hyperbranched prepolymer. Ind Crops Prod 67:143–154. https://doi.org/10.1016/j.indcrop.2015.01.031

    Article  CAS  Google Scholar 

  120. Du Y, Yan H, Huang W, Chai F, Niu S (2017) Unanticipated strong blue photoluminescence from fully biobased aliphatic hyperbranched polyesters. ACS Sustain Chem Eng 5:6139–6147. https://doi.org/10.1021/acssuschemeng.7b01019

    Article  CAS  Google Scholar 

  121. Zhang T, Howell BA, Dumitrascu A, Martin SJ, Smith PB (2014) Synthesis and characterization of glycerol-adipic acid hyperbranched polyesters. Polymer (Guildf) 55:5065–5072. https://doi.org/10.1016/j.polymer.2014.08.036

    Article  CAS  Google Scholar 

  122. Howell BA, Lazar ST (2019) Biobased plasticizers from glycerol/adipic acid hyperbranched poly (ester)s. Ind Eng Chem Res 58:17227–17234. https://doi.org/10.1021/acs.iecr.9b03869

    Article  CAS  Google Scholar 

  123. Shan P, Chen N, Hao C, Liu H, Zhang X (2020) Facile and solvent-free synthesis of a novel bio-based hyperbranched polyester with excellent low-temperature flexibility and thermal stability. Ind Crops Prod 148:112302. https://doi.org/10.1016/j.indcrop.2020.112302

    Article  CAS  Google Scholar 

  124. Sun J, Aly KI, Kuckling D (2017) Synthesis of hyperbranched polymers from vegetable oil based monomers via ozonolysis pathway. J Polym Sci A Polym Chem 55:2104–2114. https://doi.org/10.1002/pola.28600

    Article  CAS  Google Scholar 

  125. Saikia A, Hazarika D, Karak N (2019) Tough and biodegradable thermosets derived by blending of renewable resource based hyperbranched epoxy and hyperbranched polyester. Polym Degrad Stab 159:15–22. https://doi.org/10.1016/j.polymdegradstab.2018.11.012

    Article  CAS  Google Scholar 

  126. Bei Y, Hu Y, Jia P, Ma Y, Hu F, Xiao T, Yang Y, Zhou Y (2023) Bio-based hyperbranched ester plasticizers from woody oil based on cohesive energy via a one-pot synthesis reaction. J Polym Environ. https://doi.org/10.1007/s10924-023-03023-5

    Article  Google Scholar 

  127. Zhang Z, Jiang PP, Liu D, Feng S, Zhang P, Wang Y, Fu J, Agus H (2021) Research progress of novel bio-based plasticizers and their applications in poly (vinyl chloride). J Mater Sci 56:10155–10182. https://doi.org/10.1007/s10853-021-05934-x

    Article  CAS  Google Scholar 

  128. Hazarika D, Karak N (2016) Biodegradable tough waterborne hyperbranched polyester/carbon dot nanocomposite: approach towards an eco-friendly material. Green Chem 18:5200–5211. https://doi.org/10.1039/c6gc01198e

    Article  CAS  Google Scholar 

  129. Hazarika D, Karak N (2018) Unprecedented influence of carbon Dot@TiO2 nanohybrid on multifaceted attributes of waterborne hyperbranched polyester nanocomposite. ACS Omega 3:1757–1769. https://doi.org/10.1021/acsomega.7b02079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Pramanik S, Bharali P, Konwar BK, Karak N (2014) Antimicrobial hyperbranched poly(ester amide)/polyaniline nanofiber modified montmorillonite nanocomposites. Mater Sci Eng, C 35:61–69. https://doi.org/10.1016/j.msec.2013.10.021

    Article  CAS  Google Scholar 

  131. Pramanik S, Hazarika J, Kumar A, Karak N (2013) Castor oil based hyperbranched poly(ester amide)/polyaniline nanofiber nanocomposites as antistatic materials. Ind Eng Chem Res 52:5700–5707. https://doi.org/10.1021/ie4002603

    Article  CAS  Google Scholar 

  132. Bhagawati D, Thakur S, Karak N (2016) Castor oil based hyperbranched polyester/bitumen modified fly ash nanocomposite. Adv Nano Res 4(15):29. https://doi.org/10.12989/anr.2016.4.1.015

    Article  Google Scholar 

  133. Baruah P, Karak N (2016) Bio-based tough hyperbranched epoxy/graphene oxide nanocomposite with enhanced biodegradability attribute. Polym Degrad Stab 129:26–33. https://doi.org/10.1016/j.polymdegradstab.2016.03.021

    Article  CAS  Google Scholar 

  134. Saikia A, Karak N (2015) Castor oil based epoxy/clay nanocomposite for advanced applications. Am J Eng Appl Sci 9:31–40. https://doi.org/10.3844/ajeassp.2016.31.40

    Article  Google Scholar 

  135. Saikia A, Karak N (2017) Renewable resource based thermostable tough hyperbranched epoxy thermosets as sustainable materials. Polym Degrad Stab 135:8–17. https://doi.org/10.1016/j.polymdegradstab.2016.11.014

    Article  CAS  Google Scholar 

  136. Kumar N, Pruthi V (2014) Potential applications of ferulic acid from natural sources. Biotechnol Rep 4:86–93. https://doi.org/10.1016/j.btre.2014.09.002

    Article  CAS  Google Scholar 

  137. Liang N, Liu X, Hu J, Wu Y, Peng M, Ma Y, Jiang Y, Cheng J, Chen S, Zhang D (2023) Influence of topological structure on mechanical property of recyclable bio-based hyperbranched epoxy/carbon fiber fabric composites. Chem Eng J 471:144329. https://doi.org/10.1016/j.cej.2023.144329

    Article  CAS  Google Scholar 

  138. Boro U, Karak N (2017) Tannic acid based hyperbranched epoxy/reduced graphene oxide nanocomposites as surface coating materials. Prog Org Coat 104:180–187. https://doi.org/10.1016/j.porgcoat.2016.10.039

    Article  CAS  Google Scholar 

  139. Barua S, Gogoi B, Aidew L, Buragohain AK, Chattopadhyay P, Karak N (2015) Sustainable resource based hyperbranched epoxy nanocomposite as an infection resistant, biodegradable, implantable muscle scaffold. ACS Sustain Chem Eng 3:1136–1144. https://doi.org/10.1021/acssuschemeng.5b00069

    Article  CAS  Google Scholar 

  140. Barua S, Dutta G, Karak N (2013) Glycerol based tough hyperbranched epoxy: Synthesis, statistical optimization and property evaluation. Chem Eng Sci 95:138–147. https://doi.org/10.1016/j.ces.2013.03.026

    Article  CAS  Google Scholar 

  141. Saikia A, Karak N (2019) Fabrication of renewable resource based hyperbranched epoxy nanocomposites with mwcnt-polyaniline nanofiber-carbon dot nanohybrid as tough anticorrosive materials. Express Polym Lett 13:959–973. https://doi.org/10.3144/expresspolymlett.2019.84

    Article  CAS  Google Scholar 

  142. Winnacker M, Rieger B (2015) Recent progress in sustainable polymers obtained from cyclic terpenes: synthesis, properties, and application potential. Chemsuschem 8:2455–2471. https://doi.org/10.1002/cssc.201500421

    Article  CAS  PubMed  Google Scholar 

  143. Firdaus M. Terpenes as renewable resources for organic and macromolecular chemistry. https://publikationen.bibliothek.kit.edu/1000034639

  144. Satoh T, Kinugawa Y, Tamaki M, Kitajyo Y, Sakai R, Kakuchi T (2008) Synthesis, structure, and characteristics of hyperbranched polyterpene alcohols. Macromolecules 41:5265–5271. https://doi.org/10.1021/ma800851t

    Article  CAS  Google Scholar 

  145. Zhang J, Mi X, Chen S, Xu Z, Zhang D, Miao M, Wang J (2020) A bio-based hyperbranched flame retardant for epoxy resins. Chem Eng J 381:122719. https://doi.org/10.1016/j.cej.2019.122719

    Article  CAS  Google Scholar 

  146. Arza CR, Ilk S, Demircan D, Zhang B (2018) New biobased non-ionic hyperbranched polymers as environmentally friendly antibacterial additives for biopolymers. Green Chem 20:1238–1249. https://doi.org/10.1039/c7gc03401f

    Article  CAS  Google Scholar 

  147. Wang Z, Zhao S, Pang H, Zhang W, Zhang S, Li J (2019) Developing eco-friendly high-strength soy adhesives with improved ductility through multiphase core-shell hyperbranched polysiloxane. ACS Sustain Chem Eng 7:7784–7794. https://doi.org/10.1021/acssuschemeng.8b06810

    Article  CAS  Google Scholar 

  148. Zhang Y, Chen M, Zhang J, Li J, Shi SQ, Gao Q (2020) A high-performance bio-adhesive using hyperbranched aminated soybean polysaccharide and bio-based epoxide. Adv Mater Interfaces 7(9):202000148. https://doi.org/10.1002/admi.202000148

    Article  CAS  Google Scholar 

  149. Jiang Y, Li J, Li D, Ma Y, Zhou S, Wang Y, Zhang D (2024) Bio-based hyperbranched epoxy resins: synthesis and recycling. Chem Soc Rev 53:624–655. https://doi.org/10.1039/D3CS00713H

    Article  CAS  PubMed  Google Scholar 

  150. Royappa AT (2002) Synthesis and characterization of a hyperbranched copolymer. J Chem Educ 79:81. https://doi.org/10.1021/ed079p81

    Article  CAS  Google Scholar 

  151. Voit B (2005) Hyperbranched polymers—All problems solved after 15 years of research? J Polym Sci A Polym Chem 43:2679–2699. https://doi.org/10.1002/pola.20821

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Komal bhutra has done the major writting of the draft. Sayan Datta has helped in literature survey and drawn all figures, wheres Dr. A.P.More has done the final review and revision of draft

Corresponding author

Correspondence to Aarti P. More.

Ethics declarations

Conflict of interest

There is no conflict of interest by any of the author to this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhutra, K., Datta, S. & More, A.P. A Comprehensive Review on Biobased Hyperbranched Polymers. Polym. Bull. (2024). https://doi.org/10.1007/s00289-024-05293-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00289-024-05293-y

Keywords

Navigation