Skip to main content
Log in

Biodegradable microfibrous, electrospunned hydroxyapatite nanoparticles/poly(glycerol sebacate)-co-poly(ε-caprolactone) nanocomposite scaffolds for tissue engineering applications

  • ORIGINAL PAPER
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Soft tissue engineering has focused on green, solvent-free biopolymers with rubber-like characteristics. One of the well-known elastomeric polyesters is polyglycerol sebacate (PGS). The present investigation involves the synthesis of a novel biopolymer composed of PGS-co-poly(ε-caprolactone) (PCL) copolymer, alongside hydroxyapatite (HA) using bovine bone. These synthesized materials were utilized to build scaffolds using 18–22 kV electrospinning. By in situ polymerization, PGS-co-PCL/HA nanocomposites with 5% and 10% hydroxyapatite nanoparticles were developed. Various analysis such as FTIR, TGA, SEM, and DSC were utilized to examine the prepared samples. Introducing 10% HA to the PGS-co-PCL copolymer blends boosted nanocomposite mechanical strength by 300%. Meanwhile, PGS-co-PCL-based samples and their nanocomposites demonstrated promising biocompatibility and antibacterial characteristics. Biodegradability experiments revealed that at pH 7, PGS-co-PCL-HA10% was degraded by 45% within 30 days, whereas at pH 11, degradation accelerated to 65%. This study’s findings provide a novel approach for soft tissue engineers to construct effective scaffolds with great biocompatibility and enhanced mechanical properties by combining PGS with co-PCL and adding HA nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Sadeghzadeh H et al (2023) A review on the effect of nanocomposite scaffolds reinforced with magnetic nanoparticles in osteogenesis and healing of bone injuries. Stem Cell Res Ther 14(1):194

    Article  PubMed  PubMed Central  Google Scholar 

  2. Motiee E-S et al (2023) Investigation of physical, mechanical and biological properties of polyhydroxybutyrate-chitosan/graphene oxide nanocomposite scaffolds for bone tissue engineering applications. Int J Biol Macromol 247:125593

    Article  CAS  PubMed  Google Scholar 

  3. Christy PN et al (2020) Biopolymeric nanocomposite scaffolds for bone tissue engineering applications—a review. J Drug Deliv Sci Technol 55:101452

    Article  CAS  Google Scholar 

  4. Vogt L et al (2021) Poly(glycerol sebacate) in biomedical applications-a review of the recent literature. Adv Healthc Mater 10(9):e2002026

    Article  PubMed  Google Scholar 

  5. Saravani S, Ebrahimian-Hosseinabadi M, Mohebbi-Kalhori D (2019) Polyglycerol sebacate/chitosan/gelatin nano-composite scaffolds for engineering neural construct. Mater Chem Phys 222:147–151

    Article  CAS  Google Scholar 

  6. Henkel J et al (2013) Bone regeneration based on tissue engineering conceptions—a 21st century perspective. Bone Res 1(1):216–248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Su SK, Kang PM (2020) Systemic review of biodegradable nanomaterials in nanomedicine. Nanomaterials (Basel) 10(4):656

    Article  CAS  PubMed  Google Scholar 

  8. Kharazi AZ et al (2018) A nanofibrous bilayered scaffold for tissue engineering of small-diameter blood vessels. Polym Adv Technol 29(12):3151–3158

    Article  CAS  Google Scholar 

  9. Gaharwar AK et al (2015) Anisotropic poly (glycerol sebacate)-poly (ϵ-caprolactone) electrospun fibers promote endothelial cell guidance. Biofabrication 7(1):015001

    Article  Google Scholar 

  10. Rezk A, Kim K-S, Kim C (2020) Poly(ε-caprolactone)/poly(glycerol sebacate) composite nanofibers incorporating hydroxyapatite nanoparticles and simvastatin for bone tissue regeneration and drug delivery applications. Polymers 12:1–10

    Article  Google Scholar 

  11. Yang B, Lv W, Deng Y (2017) Drug loaded poly(glycerol sebacate) as a local drug delivery system for the treatment of periodontal disease. RSC Adv 7(59):37426–37435

    Article  CAS  Google Scholar 

  12. Louage B et al (2017) Poly(glycerol sebacate) nanoparticles for encapsulation of hydrophobic anti-cancer drugs. Polym Chem 8(34):5033–5038

    Article  CAS  Google Scholar 

  13. Moradi A, Pakizeh M, Ghassemi T (2022) A review on bovine hydroxyapatite; extraction and characterization. Biomed Phys Eng Express 8(1):012001

    Article  Google Scholar 

  14. Abazari MF et al (2021) Poly (glycerol sebacate) and polyhydroxybutyrate electrospun nanocomposite facilitates osteogenic differentiation of mesenchymal stem cells. J Drug Deliv Sci Technol 66:102796

    Article  CAS  Google Scholar 

  15. Zhang Y et al (2022) Recent advances in cardiac patches: materials, preparations, and properties. ACS Biomater Sci Eng 8(9):3659–3675

    Article  CAS  PubMed  Google Scholar 

  16. Chen Q, Liang S, Thouas GA (2011) Synthesis and characterisation of poly(glycerol sebacate)-co-lactic acid as surgical sealants. Soft Matter 7(14):6484–6492

    Article  CAS  Google Scholar 

  17. Sant S, Hwang CM, Lee SH, Khademhosseini A (2011) Hybrid PGS-PCL microfibrous scaffolds with improved mechanical and biological properties. J Tissue Eng Regener Med 5(4):283–291

    Article  CAS  Google Scholar 

  18. Angammana CJ, Jayaram SH (2011) Analysis of the effects of solution conductivity on electrospinning process and fiber morphology. IEEE Trans Ind Appl 47(3):1109–1117

    Article  CAS  Google Scholar 

  19. Wang Y et al (2019) Optimized synthesis of biodegradable elastomer PEGylated poly(glycerol sebacate) and their biomedical application. Polymers 11:965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Guler S et al (2023) Biofabrication of poly(glycerol sebacate) scaffolds functionalized with a decellularized bone extracellular matrix for bone tissue engineering. Bioengineering 10(1):30

    Article  CAS  Google Scholar 

  21. Patel DK et al (2020) Osteogenic potential of human mesenchymal stem cells on eggshells-derived hydroxyapatite nanoparticles for tissue engineering. J Biomed Mater Res B Appl Biomater 108(5):1953–1960

    Article  CAS  PubMed  Google Scholar 

  22. Berton F et al (2020) A critical review on the production of electrospun nanofibres for guided bone regeneration in oral surgery. Nanomaterials 10(1):16

    Article  CAS  Google Scholar 

  23. Koons GL, Diba M, Mikos AG (2020) Materials design for bone-tissue engineering. Nat Rev Mater 5(8):584–603

    Article  CAS  Google Scholar 

  24. Bal Z et al (2020) Bone regeneration with hydroxyapatite-based biomaterials. Emergent Mater 3(4):521–544

    Article  CAS  Google Scholar 

  25. Wei S et al (2020) Biodegradable materials for bone defect repair. Mil Med Res 7(1):54

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Piszko P et al (2021) PGS/HAp microporous composite scaffold obtained in the TIPS-TCL-SL method: an innovation for bone tissue engineering. Int J Mol Sci 22(16):8587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Khayoon HA et al (2023) Fabrication of LaFeO3-nitrogen deficient g-C3N4 composite for enhanced the photocatalytic degradation of RhB under sunlight irradiation. Inorg Chem Commun 157:111356

    Article  CAS  Google Scholar 

  28. Teymourinia H et al (2023) Development of CNOs/PANI-NTs/AuNPs nanocomposite as an electrochemical sensor and Z-scheme photocatalyst for determination and degradation of ciprofloxacin. Surfaces Interfaces 42:103412

    Article  CAS  Google Scholar 

  29. Salman NS, Alshamsi HA (2022) Synthesis of sulfonated polystyrene-based porous activated carbon for organic dyes removal from aqueous solutions. J Polym Environ 30(12):5100–5118

    Article  CAS  Google Scholar 

  30. Kadhem AA, Alshamsi HA (2023) Biosynthesis of Ag-ZnO/rGO nanocomposites mediated Ceratophyllum demersum L. leaf extract for photocatalytic degradation of Rhodamine B under visible light. Biomass Conversion Biorefinery

  31. Daglar O et al (2020) Electrospinning of poly(1,4-cyclohexanedimethylene acetylene dicarboxylate): study on the morphology, wettability, thermal and biodegradation behaviors. Macromol Chem Phys 221(23):2000310

    Article  CAS  Google Scholar 

  32. Xing Z-C et al (2011) Fabrication of biodegradable polyester nanocomposites by electrospinning for tissue engineering. J Nanomater 2011:929378

    Article  Google Scholar 

  33. Wei Z et al (2020) Electrospun antibacterial nanofibers for wound dressings and tissue medicinal fields: a review. J Innov Opt Health Sci 13(05):2030012

    Article  CAS  Google Scholar 

  34. Tiwari AP, Rohiwal SS (2019) Synthesis and bioconjugation of hybrid nanostructures for biomedical applications. In: Ashok Bohara R, Thorat N (eds) Hybrid nanostructures for cancer theranostics. Elsevier, New York, pp 17–41

    Chapter  Google Scholar 

  35. Rai R et al (2012) Synthesis, properties and biomedical applications of poly(glycerol sebacate) (PGS): a review. Prog Polym Sci 37(8):1051–1078

    Article  CAS  Google Scholar 

  36. Piotr Denis M (2019) Agnieszka Gadomska-Gajadhu, and Paweł Sajkiewicz, Poly(Glycerol Sebacate)–Poly(l-Lactide) Nonwovens. Towards attractive electrospun material for tissue engineering. Polymers 11:2113

    Article  PubMed  PubMed Central  Google Scholar 

  37. Mostafa-Rostamian MRK, Dehkordi SR, Panahi-Sarmad M, Tirgar M, Goodarzi V (2020) Design and characterization of poly(glycerol-sebacate)-co-poly (caprolactone) (PGS-co-PCL) and its nanocomposites as novel biomaterials: The promising candidate for soft tissue engineering. Eur Polym J 138:109985

    Article  Google Scholar 

  38. Odusote JK et al (2019) Synthesis and characterization of hydroxyapatite from bovine bone for production of dental implants. J Appl Biomater Funct Mater 17(2):2280800019836829

    PubMed  Google Scholar 

  39. ASTM F1635-04A (2006) Test Method for Degradation Testing of Hydrolytically Degradable Polymer Resins and fabricated Forms for Surgical Implants

  40. Aghajan MH et al (2020) Using solvent-free approach for preparing innovative biopolymer nanocomposites based on PGS/gelatin. Eur Polymer J 131:109720

    Article  CAS  Google Scholar 

  41. Farjaminejad S et al (2021) Tuning properties of bio-rubbers and its nanocomposites with addition of succinic acid and ɛ-caprolactone monomers to poly(glycerol sebacic acid) as main platform for application in tissue engineering. Eur Polymer J 159:110711

    Article  CAS  Google Scholar 

  42. Hosseini B et al (2016) Synthesis of nanocrystalline hydroxyapatite using eggshell and trimethyl phosphate. Trauma Monthly (in Press)

  43. Jiang L et al (2019) Electrospun nanofibrous thermoplastic polyurethane/poly(glycerol sebacate) hybrid scaffolds for vocal fold tissue engineering applications. Mater Sci Eng C 94:740–749

    Article  CAS  Google Scholar 

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Farid Naeimi or Hossein Ali Khonakdar.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pourhoseyini, T., Naeimi, F., Mehrazin, M. et al. Biodegradable microfibrous, electrospunned hydroxyapatite nanoparticles/poly(glycerol sebacate)-co-poly(ε-caprolactone) nanocomposite scaffolds for tissue engineering applications. Polym. Bull. (2024). https://doi.org/10.1007/s00289-024-05235-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00289-024-05235-8

Keywords

Navigation