Skip to main content

Advertisement

Log in

The influence of silane-grafted aluminum oxide nanoparticles on the interfacial interaction phase and electric performance of polyvinyl chloride-based nanocomposite

  • ORIGINAL PAPER
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Enhancing voltage of polyvinyl chloride (PVC)-insulated cable has been paid a great attention from researchers. Metal oxide nanoparticles such as: SiO2, ZnO, Al2O3 have shown good promise to achieve this goal. However, the great challenge for nanocomposites preparation is the dispersibility and interfacial interaction between filler(s) and PVC matrix to obtain high mechanical and electrical performances of nanocomposites. In this study, two kinds of silane substances, (3-(trimethoxysilyl) propyl methacrylate (MPTS) and (3-aminopropyl) triethoxysilane (APTES)), were used as surface modification agents for γ-Al2O3 nanoparticles (NPs). The silanes grafting on the surface of γ-Al2O3 NPs was confirmed by Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA) and X-ray diffraction (XRD). By field emission scanning electron microscopy (FESEM) observation, the interfacial interaction index and dynamic mechanical thermal analysis (DMTA) proved that the presence of silane remarkably improved the dispersibility, interfacial interaction and adhesion of Al2O3 NPs with PVC matrix. Thanks to these improvements, the obtained PVC/Al2O3 nanocomposites had much enhanced mechanical and electrical properties. At 0.75 wt% of loading content, MPTS-modified Al2O3 nanoparticles incorporating into PVC matrix showed the high properties with 60.51 MPa of yield strength, 90.48 MPa of flexural strength and the maximum value of electrical breakdown strength (EEB) could reach up to 98.56 kV/mm. The nanocomposite based on PVC matrix reinforcing with γ-Al2O3 NPs is a promising material for high-quality electric cable manufacturing field.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Jeroense M, Saltzer M, Ghorbani H (2013) Technical challenges linked to HVDC cable development. In: Proceedings of the Jicable-HVDC’13. France, p 1.1

  2. Gustafsson A, Saltzer M, Farkas A, Ghorbani G, Quist T, Jeroense M (2014) ABB grid system, Technical Paper, August

  3. Habashy MM, Abd-Elhady AM, Elsad RA, Izzularab MA (2019) Performance of PVC/SiO2 nanocomposites under thermal ageing. Appl Nanosci. https://doi.org/10.1007/s13204-018-00941-y

    Article  Google Scholar 

  4. Shwehdi MH, Morsy MA, Abugurain A (2003) Thermal ageing tests on XLPE and PVC cable insulation materials of Saudi Arabia. In: 2003 annual report conference on electrical insulation and dielectric phenomena, Albuquerque, NM, USA

  5. Hajibeygi M, Maleki M, Shabanian M, Ducos F, Vahabi H (2018) New polyvinyl chloride (PVC) nanocomposite consisting of aromatic polyamide and chitosan modified ZnO NPs with enhanced thermal stability, low heat release rate and improved mechanical properties. Appl Surf Sci 439:1163–1179

    Article  CAS  Google Scholar 

  6. Mansour SA, Elsad RA, Izzularab MA (2016) Dielectric properties enhancement of PVC nanodielectrics based on synthesized ZnO NPs. J Polym Res 23:1–8

    Article  CAS  Google Scholar 

  7. Sugumaran CP (2015) [IEEE 2015 IEEE conference on electrical insulation and dielectric phenomena - (CEIDP) - Ann Arbor, MI, USA (2015.10.18–2015.10.21)]. In: 2015 IEEE conference on electrical insulation and dielectric phenomena (CEIDP) - experimental study on dielectric and mechanical properties of PVC cable insulation with SiO2/CaCO3 nanofillers, pp 503–506. https://doi.org/10.1109/CEIDP.2015.7352072

  8. Shuisheng S, Chunzhong L, Ling Z, Du HL, Burnell-Gray JS (2006) Effects of surface modification of fumed silica on interfacial structures and mechanical properties of poly(vinyl chloride) composites. Eur Polym J 42(7):1643–1652

    Article  Google Scholar 

  9. Gubanski SM (2016) [IEEE 2016 IEEE international conference on high voltage engineering and application (ICHVE) - Chengdu, China (2016.9.19–2016.9.22)]. In: 2016 IEEE international conference on high voltage engineering and application (ICHVE) - insulating materials for next generations of HVAC and HVDC cables. pp 1–6. https://doi.org/10.1109/ICHVE.2016.7800823

  10. Liu D, Pourrahimi AM, Olsson RT, Hedenqvist MS, Gedde UW (2015) Influence of nanoparticle surface treatment on particle dispersion and interfacial adhesion in low-density polyethylene/aluminium oxide nanocomposites. Eur Polymer J 66:67–77

    Article  CAS  Google Scholar 

  11. Tanaka T (2005) Dielectric nanocomposites with insulating properties. IEEE Trans Dielectr Electr Insul 12:914–928

    Article  CAS  Google Scholar 

  12. Nelson JK, Fothergill JC (2004) Internal charge behaviour of nanocomposites. Nanotechnology 15:586–595

    Article  CAS  Google Scholar 

  13. Tanaka T, Kozako M, Fuse N, Ohki Y (2005) Proposal of a multi-core model for polymer nanocomposite dielectrics. IEEE Trans Dielectr Electr Insul 12:669–681

    Article  CAS  Google Scholar 

  14. Fleming RJ, Ammala A, Casey PS, Lang SB (2008) Conductivity and space charge in LDPE containing nano and micro-sized ZnO particles. IEEE Trans Dielectr Electr Insul 15(1):118–126

    Article  CAS  Google Scholar 

  15. Yin Y, Dong X, Chen J, Li Z, Dang Z (2006) High field electrical conduction in the nanocomposite of low-density polyethylene and nanoSiOx. IEEJ Trans Fundam Mater 126:1064–1071

    Article  Google Scholar 

  16. Pourrahimi AM, Pallon LKH, Liu D, Hoang TA, Gubanski SM, Hedenqvist MS, Olsson RT, Gedde UW (2016) Polyethylene nanocomposites for the next generation of ultralow-transmission-loss HVDC cables: Insulation containing moisture-resistant MgO Nanoparticles. ACS Appl Mater Interfaces 8(23):14824–14835

    Article  PubMed  Google Scholar 

  17. Osman MA, Rupp JE, Suter UW (2005) Effect of non-ionic surfactants on the exfoliation and properties of polyethylene-layered silicate nanocomposites. Polymer 46(19):8202–8209

    Article  CAS  Google Scholar 

  18. Jiang H, Moon KS, Li Y, Wong CP (2006) Surface functionalized silver nanoparticles for ultrahigh conductive polymer composites. Chem Mater 18(13):2969–2973

    Article  CAS  Google Scholar 

  19. Lee HJ, Choi HW, Kim KJ, Lee SC (2006) Modification of hydroxyapatite nanosurfaces for enhanced colloidal stability and improved interfacial adhesion in nanocomposites. Chem Mater 18(21):5111–5118

    Article  CAS  Google Scholar 

  20. Zhu J, He Q, Luo Z, Khasanov A, Li Y, Sun L et al (2012) Property manipulated polypropylene–iron nanocomposites with maleic anhydride polypropylene. J Mater Chem 22:15928–15838

    Article  CAS  Google Scholar 

  21. Wu D, Wang X, Song Y, Jin R (2004) Nanocomposites of poly(vinyl chloride) and nanometric calcium carbonate particles: effects of chlorinated polyethylene on mechanical properties, morphology, and rheology. J Appl Polym Sci 92:2714–2723

    Article  CAS  Google Scholar 

  22. Pukanszky B (1990) Influence of interface interaction on the ultimate tensile properties of polymer composites. Composites 21(3):255–262

    Article  CAS  Google Scholar 

  23. Kurimoto M, Okubo H, Kato K, Hanai M, Hoshina Y, Takei M, Hayakawa N (2010) Dielectric properties of epoxy/alumina nanocomposite influenced by control of micrometric agglomerates. IEEE Trans Dielectr Electr Insul 17:662–670

    Article  CAS  Google Scholar 

  24. Zhao H, Li RK (2008) Effect of water absorption on the mechanical and dielectric properties of nano-alumina filled epoxy nanocomposites. Compos Part A Appl Sci Manuf 39(4):602–611. https://doi.org/10.1016/j.compositesa.2007.07.006

    Article  CAS  Google Scholar 

  25. Haizhong Z, Jian Z, Shiqiang L, Gaochao W, Zhifeng X (2006) Effect of core–shell composite particles on the sintering behavior and properties of nano-Al2O3/polystyrene composite prepared by SLS. Mater Lett 60(9–10):1219–1223

    Google Scholar 

  26. Zefang Z, Hong L (2008) Preparation of α-alumina/polymethacrylic acid composite abrasive and its CMP performance on glass substrate. Microelectron Eng 85(4):714–720

    Article  Google Scholar 

  27. Pravin NN, Vineeta DD (2018) Dielectric behavior of plasticized PVC/alumina nanocomposites. Mater Today Proc 5(1–2):2254–2262

    Google Scholar 

  28. Banerjee S, Dubey S, Gautam RK, Chattopadhyaya MC, Sharma YC (2019) Adsorption characteristics of alumina nanoparticles for the removal of hazardous dye, Orange G from aqueous solutions. Arab J Chem 12(8):5339–5354

    Article  CAS  Google Scholar 

  29. Rabu RA, Jewena N, Das SK, Khandaker JI, Ahmed F (2020) Synthesis of metal-oxide (Al2O3) nanoparticles by using autoclave for the efficient absorption of heavy metal ions. J Nanomater Mol Nanotechnol 9(6):1–6

    Google Scholar 

  30. Alamouti AF, Nadafan M, Dehghani Z, Majles-Ara MH, Noghreiyan AV (2021) Structural and optical coefficients investigation of γ-Al2O3 nanoparticles using Kramers-Kronig relations and Z–scan technique. J Asian Ceram Soc 9(1):366–373

    Article  Google Scholar 

  31. Kundie F, Azhari CH, Ahmad ZA (2018) Effect of nano-and micro-alumina fillers on some properties of poly (methyl methacrylate) denture base composites. J Serb Chem Soc 83(1):75–91

    Article  CAS  Google Scholar 

  32. Tang B, Ge J, Zhuo L, Wang G, Niu J et al (2005) A facile and controllable synthesis of alumina nanostructure without a surfactant. Eur J Inorg Chem 2005(21):4366–4369

    Article  Google Scholar 

  33. Siengchin S, Karger-Kociss J, Thomann R (2007) Alumina-filled polystyrene micro- and nanocomposites prepared by melt mixing with and without latex precompounding: structure and properties. J Appl Polym Sci 105(5):2963–2972

    Article  CAS  Google Scholar 

  34. Isabela MFL, Abersfelder K, Oliveira PW, Mousavi SH, Junqueira RMR (2018) Flower-like silicon dioxide/polymer composite particles synthesized by dispersion polymerization route. J Mater Sci 53:11367–11377

    Article  Google Scholar 

  35. Liugang C, Guotian Y, Kunpeng L, Qingfeng W, Dayan X, Guo M (2014) Al–O–Si bond formation in Boehmite-fumed silica mixtures during mechanochemical activation. Interceram Int Ceram Rev 63(7–8):372–375

    Google Scholar 

  36. Temuujin J, Okada K, MacKenzie KJD (1998) Characterization of aluminosilicate (mullite) precursors prepared by a mechanochemical process. J Mater Res 13(8):2184–2189

    Article  CAS  Google Scholar 

  37. Martin W, Fritjof N, Emma L, Wen-Chung T, Henrik H, Anna C, Gedde UW, Eva M (2014) Polymer-grafted Al2O3-nanoparticles for controlled dispersion in poly(ethylene-co-butyl acrylate) nanocomposites. Polymer 55(9):2125–2138

    Article  Google Scholar 

  38. Mueller R, Kammler HK, Wegner K, Pratsinis SE (2002) OH surface density of SiO2 and TiO2 by thermogravimetric analysis. Langmuir 19:160–165

    Article  Google Scholar 

  39. Nordell P, Nawaz S, Azhdar B, Hillborg H, Gedde UW (2012) Preparation and characterization of aluminum oxide–poly(ethylene-co-butyl acrylate) nanocomposites. J Appl Polym Sci 125(2):975–983

    Article  CAS  Google Scholar 

  40. Gulsen AA, Ismail A (2011) A study on fusion and rheological behaviors of PVC/SiO2 microcomposites and nanocomposites: the effects of SiO2 particle size. Polym Eng Sci 51(8):1574–1579

    Article  Google Scholar 

  41. Saad ALG, Aziz HA, Dimitry OIH (2004) Studies of electrical and mechanical properties of poly(vinyl chloride) mixed with electrically conductive additives. J Appl Polym Sci 91:1590–1598

    Article  CAS  Google Scholar 

  42. Jancar J, Kucera J (1990) Yield behavior of polypropylene filled with CaCO3 and Mg(OH)2. I: ‘“zero”’ interfacial adhesion. Polym Eng Sci 30:707–713

    Article  CAS  Google Scholar 

  43. Jancar J, Kucera J (1990) Yield behavior of PP/CaCO3 and PP/Mg(OH)2 composites. II: enhanced interfacial adhesion. Polym Eng Sci 30:714–720

    Article  CAS  Google Scholar 

  44. Chen J, Nie XA, Jiang JC, Zhou YH (2017) Thermal degradation and plasticizing mechanism of poly(vinyl chloride) plasticized with a novel cardanol derived plasticizer. IOP Conf Ser Mater Sci Eng 292:012008

    Article  Google Scholar 

  45. Selulosa-Polivinilklorida SR, Sheltami RM, Kargarzadeh HA, Abdullah IB (2015) Effects of silane surface treatment of cellulose nanocrystals on the tensile properties of cellulose-polyvinyl chloride nanocomposite. Sains Malays 44:801–810

    Article  Google Scholar 

  46. Fuquiang TF, Lei Q, Wang X, Wang Y (2012) Investigation of electrical properties of LDPE/ZnO nanocomposite dielectrics. IEEE Trans Dielectr Electr Insul 19:763–769

    Article  Google Scholar 

  47. Theodosiou K, Vitellas I, Gialas I, Agoris DP (2004) Polymer films degradation and breakdown in high voltage AC fields. J Electr Eng 55:225–231

    CAS  Google Scholar 

  48. Danikas MG, Tanaka T (2009) Nanocomposites—a review of electrical treeing and breakdown. IEEE Electr Insul Mag 25:19–25

    Article  Google Scholar 

  49. Yeetsorn R (2010) Development of electrically conductive thermoplastic composites for bipolar plate application in polymer electrolyte membrane fuel cell, a thesis, Doctor of Philosophy in Chemical Engineering, Waterloo, Ontario, Canada (2010)

  50. Tanaka T, Matsunawa A, Ohki Y, Kozako M, Kohtoh M, Okabe S (2006) Treeing phenomenon inepoxy/alumina nanocomposite and interpretation by a multi-core model. IEEJ Trans Fundam Mater 126:1128–1135

    Article  Google Scholar 

  51. Jonscher AK, Lacoste R (1984) On a cumulative model of dielectric breakdown in solids. IEEE Trans Electr Insul 19:567–577

    Article  Google Scholar 

  52. Mansour SA, Yahia IS, Yakuphanoglu F (2010) The electrical conductivity and dielectric properties of C.I. Basic Violet 10. Dyes Pigments 87:144–148

    Article  CAS  Google Scholar 

  53. Mansour SA, Yahia IS, Sakr GB (2010) Electrical conductivity and dielectric relaxation behavior of fluorescein sodium salt (FSS). Solid State Commun 150:1386–1391

    Article  CAS  Google Scholar 

  54. Abdullah ET, Naje AN (2011) AC electrical and dielectric properties of PVC-MWCNT nanocomposites. Indian J Sci Technol 4(7):731–735

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was financially supported by the Vietnam Ministry of International Trade and Industry (code number of 031.2021.ĐT.BO/HĐKHCN).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nguyen Vu Giang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huynh, M.D., Trung, T.H., Tuan, V.M. et al. The influence of silane-grafted aluminum oxide nanoparticles on the interfacial interaction phase and electric performance of polyvinyl chloride-based nanocomposite. Polym. Bull. (2024). https://doi.org/10.1007/s00289-024-05232-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00289-024-05232-x

Keywords

Navigation