Skip to main content
Log in

Synthesis, optimization, and multifunctional evaluation of amla-based novel biodegradable hydrogel

  • ORIGINAL PAPER
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

The utilization of biodegradable hydrogels based on natural polysaccharides in the agricultural and biomedical sectors is anticipated to be a growing field of interest. Due to increasing environmental pollution, the current global goal is to synthesize sustainable materials based on natural polysaccharides to conserve natural resources for the future. In this study, we synthesized an amla-based hydrogel, denoted as AL-g-poly(MAA), using the graft-free radical polymerization method. Methacrylic acid (MAA) was employed as the monomer, N,N′-methylenebisacrylamide (MBA) served as the crosslinker, and ammonium persulfate (APS) acted as the initiator. The synthesized hydrogel, AL-g-poly(MAA), underwent optimization by adjusting seven parameters: initiator, solvent, time, monomer, power, pH, and crosslinker, to achieve the highest swelling percentage. The optimized values were as follows: solvent: 10 ml, time: 150 s, monomer: 0.039 mol/L, power: 60%, pH: 7, and crosslinker: 0.0648 mol/L. The cross-linking process was confirmed through Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), X-ray diffraction (XRD), and thermal gravimetric analysis (TGA) techniques. The swelling behavior of the synthesized hydrogels was determined in saline solutions with varying ionic strengths and concentrations, revealing maximum swelling in solutions with lower ionic strengths and concentrations. Additionally, the density and porosity of the hydrogels were examined. The biodegradability of AL-g-poly(MAA) was tested through soil burial and vermicomposting experiments, demonstrating its significant potential for agriculture applications. Furthermore, both the backbone and the synthesized hydrogel were evaluated for antibacterial activity against four bacterial strains (Burkholderia gladioli, Klebsiella pneumoniae, Staphylococcus aureus, and Bacillus cereus), revealing strong potential as an antimicrobial agent and therefore having applications in the biomedical field. The mechanism underlying the inhibitory effect of synthesized AL-g-poly(MAA) hydrogel on bacterial cell membranes is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Scheme 4

Similar content being viewed by others

References

  1. Kumar V, Mittal H, Alhassan SM (2019) Biodegradable hydrogels of tragacanth gum polysaccharide to improve water retention capacity of soil and environment-friendly controlled release of agrochemicals. Int J Biol Macromol 132:1252–1261

    Article  PubMed  Google Scholar 

  2. Variya BC, Bakrania AK, Patel SS (2016) Emblica officinalis (Amla): a review for its phytochemistry, ethnomedicinal uses and medicinal potentials with respect to molecular mechanisms. Pharmacol Res 111:180–200

    Article  CAS  PubMed  Google Scholar 

  3. Mahady GB (2005) Medicinal plants for the prevention and treatment of bacterial infections. Curr Pharm Des 11(19):2405–2427

    Article  CAS  PubMed  Google Scholar 

  4. Raschip IE, Paduraru-Mocanu OM, Nita LE, Dinu MV (2020) Antibacterial porous xanthan-based films containing flavoring agents evaluated by near infrared chemical imaging technique. J Appl Polym Sci 137(37):49111

    Article  CAS  Google Scholar 

  5. Li Z, Lin Z (2021) Recent advances in polysaccharide-based hydrogels for synthesis and applications. Aggregate 2(2):e21

    Article  CAS  Google Scholar 

  6. Pourshahrestani S, Zeimaran E, Kadri NA, Mutlu N, Boccaccini AR (2020) Polymeric hydrogel systems as emerging biomaterial platforms to enable hemostasis and wound healing. Adv Healthc Mater 9(20):2000905

    Article  CAS  Google Scholar 

  7. Li Y, Tianzhen Xu, Zhuolong Tu, Dai W, Xue Y, Tang C, Gao W, Mao C, Lei Bo, Lin C (2020) Bioactive antibacterial silica-based nanocomposites hydrogel scaffolds with high angiogenesis for promoting diabetic wound healing and skin repair. Theranostics 10(11):4929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bashir S, Hina M, Iqbal J, Rajpar AH, Mujtaba MA, Alghamdi NA, Wageh S, Ramesh K, Ramesh S (2020) Fundamental concepts of hydrogels: Synthesis, properties, and their applications. Polymers 12(11):2702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Fosso-Kankeu E, Mittal H, Waanders F, Ray SS (2017) Thermodynamic properties and adsorption behaviour of hydrogel nanocomposites for cadmium removal from mine effluents. J Ind Eng Chem 48:151–161

    Article  CAS  Google Scholar 

  10. Bharti B, Kalia S, Kumar S, Kumar A, Mittal H (2013) Surface functionalization of sisal fibers using peroxide treatment followed by grafting of poly (ethyl acrylate) and copolymers. Int J Polym Anal Charact 18(8):596–607

    Article  CAS  Google Scholar 

  11. Sharma R, Kaith BS, Kalia S, Pathania D, Kumar A, Sharma N, Street RM, Schauer C (2015) Biodegradable and conducting hydrogels based on Guar gum polysaccharide for antibacterial and dye removal applications. J Environ Manag 162:37–45

    Article  CAS  Google Scholar 

  12. Kaith BS, Jindal R, Kumari M, Kaur M (2017) Biodegradable-stimuli sensitive xanthan gum based hydrogel: evaluation of antibacterial activity and controlled agro-chemical release. React Funct Polym 120:1–13

    Article  Google Scholar 

  13. Chelu M, Musuc AM, Aricov L, Ozon EA, Iosageanu A, Stefan LM, Prelipcean A-M, Popa M, Moreno JC (2023) Antibacterial Aloe vera based biocompatible hydrogel for use in dermatological applications. Int J Mol Sci 24(4):3893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sun Ao, He X, Li L, Li T, Liu Q, Zhou X, Ji X, Li W, Qian Z (2020) An injectable photopolymerized hydrogel with antimicrobial and biocompatible properties for infected skin regeneration. NPG Asia Mater 12(1):25

    Article  CAS  ADS  Google Scholar 

  15. Ghanbari M, Salavati-Niasari M, Mohandes F (2021) Injectable hydrogels based on oxidized alginate-gelatin reinforced by carbon nitride quantum dots for tissue engineering. Int J Pharm 602:120660

    Article  CAS  PubMed  Google Scholar 

  16. Ghanbari M, Salavati-Niasari M, Mohandes F (2021) Thermosensitive alginate–gelatin–nitrogen-doped carbon dots scaffolds as potential injectable hydrogels for cartilage tissue engineering applications. RSC Adv 11(30):18423–18431

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  17. Ghanbari M, Sadjadinia A, Zahmatkesh N, Mohandes F, Dolatyar B, Zeynali B, Salavati-Niasari M (2022) Synthesis and investigation of physicochemical properties of alginate dialdehyde/gelatin/ZnO nanocomposites as injectable hydrogels. Polym Test 110:107562

    Article  CAS  Google Scholar 

  18. Ghanbari M, Salavati-Niasari M, Mohandes F, Firouzi Z, Mousavi S-D (2021) The impact of zirconium oxide nanoparticles content on alginate dialdehyde-gelatin scaffolds in cartilage tissue engineering. J Mol Liq 335:116531

    Article  CAS  Google Scholar 

  19. Huang J-C, Zhao P-C, Zhang H-Z, Hui WANG (2011) A proteomical study on the radiosensitized target molecules of Fuzheng Zengxiao Formula () in pulmonary adenocarcinoma nude mice model. J Trad Chin Med 31(1):3–6

    Article  Google Scholar 

  20. Chaikul P, Kanlayavattanakul M, Somkumnerd J, Lourith N (2021) Phyllanthus emblica L. (amla) branch: a safe and effective ingredient against skin aging. J Tradit Complement Med 11(5):390–399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Perianayagam JB, Narayanan S, Gnanasekar G, Pandurangan A, Raja S, Rajagopal K, Rajesh R, Vijayarajkumar P, Vijayakumar SG (2005) Evaluation of antidiarrheal potential of emblica officinalis. Pharm Biol 43(4):373–377

    Article  CAS  PubMed  Google Scholar 

  22. Rani TJ (2017) Consume Amla, the wonder berry-see big improvement in health. Int J Immunol Nurs 3(1):1–6

    Google Scholar 

  23. Mittal H, Jindal R, Kaith BS, Maity A, Ray SS (2015) Flocculation and adsorption properties of biodegradable gum-ghatti-grafted poly (acrylamide-co-methacrylic acid) hydrogels. Carbohydr Polym 115:617–628

    Article  CAS  PubMed  Google Scholar 

  24. Choudhary S, Sharma K, Bhatti MS, Sharma V, Kumar V (2022) DOE-based synthesis of gellan gum-acrylic acid-based biodegradable hydrogels: screening of significant process variables and in situ field studies. RSC Adv 12(8):4780–4794

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  25. Saruchi VK, Ghfar AA, Pandey S (2023) Controlled release of harmful pesticide dichlorvos through synthesized biodegradable aloe vera–acrylic acid-based hydrogel and its utilization in soil water management. J Anal Sci Technol 14(1):12

    Article  CAS  Google Scholar 

  26. Mir TA, Ganie SA, Ali A, Mazumdar N, Li Q (2022) Radiation synthesis of functionalized gum Arabic and hydroxyethyl methacrylate hydrogels for the controlled release of niacin (Vitamin B3). J Polym Environ 30(8):3250–3269

    Article  CAS  Google Scholar 

  27. Magaldi S, Mata-Essayag S, Hartung De Capriles C, Celina Pérez MT, Olaizola C, Ontiveros Y (2004) Well diffusion for antifungal susceptibility testing. Int J Infect Dis 8(1):39–45

    Article  CAS  PubMed  Google Scholar 

  28. Kaith BS, Ranjta S (2010) Synthesis of pH—thermosensitive gum Arabic based hydrogel and study of its salt-resistant swelling behavior for saline water treatment. Desalin Water Treat 24(1–3):28–37

    Article  CAS  Google Scholar 

  29. He D, Susanto H, Ulbricht M (2009) Photo-irradiation for preparation, modification and stimulation of polymeric membranes. Prog Polym Sci 34(1):62–98

    Article  CAS  Google Scholar 

  30. Arunachalam K, Pandurangan P, Shi C, Lagoa R (2023) Regulation of Staphylococcus aureus virulence and application of nanotherapeutics to eradicate s. aureus infection. Pharmaceutics 15(2):310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Pourjavadi A, Harzandi AM, Hosseinzadeh HJEPJ (2004) Modified carrageenan 3. Synthesis of a novel polysaccharide-based superabsorbent hydrogel via graft copolymerization of acrylic acid onto kappa-carrageenan in air. Eur Polym J 40(7):1363–1370

    Article  CAS  Google Scholar 

  32. Tanan W, Panichpakdee J, Saengsuwan S (2019) Novel biodegradable hydrogel based on natural polymers: synthesis, characterization, swelling/reswelling and biodegradability. Eur Polymer J 112:678–687

    Article  CAS  Google Scholar 

  33. Virk K, Sharma K, Kapil S, Kumar V, Sharma V, Pandey S, Kumar V (2022) Synthesis of gum acacia-silver nanoparticles based hydrogel composites and their comparative anti-bacterial activity. J Polym Res 29(4):118

    Article  CAS  Google Scholar 

  34. Singh J, Dhaliwal AS (2018) Synthesis, characterization and swelling behavior of silver nanoparticles containing superabsorbent based on grafted copolymer of polyacrylic acid/Guar gum. Vacuum 157:51–60

    Article  CAS  ADS  Google Scholar 

  35. Sharma AK, Kaith BS, Gupta B, Shanker U, Lochab SP (2019) Microwave assisted in situ synthesis of gum Salai guggal based silver nanocomposites-investigation of anti-bacterial properties. Cellulose 26:991–1011

    Article  CAS  Google Scholar 

  36. Kaith BS, Jindal R, Mittal H, Kumar K (2012) Synthesis, characterization, and swelling behavior evaluation of hydrogels based on gum Ghatti and acrylamide for selective absorption of saline from different petroleum fraction–saline emulsions. J Appl Polym Sci 124(3):2037–2047

    Article  CAS  Google Scholar 

  37. Singha AS, Shama An, Thakur VK (2008) Pressure induced graft-co-polymerization of acrylonitrile onto Saccharum cilliare fibre and evaluation of some properties of grafted fibre. Bull Mater Sci 31:7–13

    Article  CAS  Google Scholar 

  38. Mittal H, Kaith BS, Jindal R, Mishra SB, Mishra AK (2015) A comparative study on the effect of different reaction conditions on graft co-polymerization, swelling, and thermal properties of Gum ghatti-based hydrogels. J Therm Anal Calorim 119:131–144

    Article  CAS  Google Scholar 

  39. Saruchi BSK, Jindal R, Kapur GS (2013) Enzyme-based green approach for the synthesis of gum tragacanth and acrylic acid cross-linked hydrogel: its utilization in controlled fertilizer release and enhancement of water-holding capacity of soil. Iran Polym J 22:561–570

    Article  CAS  Google Scholar 

  40. Sharma K, Kaith BS, Kumar V, Kumar V, Som S, Kalia S, Swart HC (2013) Synthesis and properties of poly (acrylamide-aniline)-grafted gum ghatti based nanospikes. RSC Adv 3(48):25830–25839

    Article  CAS  ADS  Google Scholar 

  41. Sharma B, Thakur S, Trache D, Nezhad HY, Thakur VK (2020) Microwave-assisted rapid synthesis of reduced graphene oxide-based gum tragacanth hydrogel nanocomposite for heavy metal ions adsorption. Nanomaterials 10(8):1616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Pandey S, Do JY, Kim J, Kang M (2020) Fast and highly efficient removal of dye from aqueous solution using natural locust bean gum based hydrogels as adsorbent. Int J Biol Macromol 143:60–75

    Article  CAS  PubMed  Google Scholar 

  43. Sharma P, Jindal R, Maiti M, Jana AK (2016) Novel organic–inorganic composite material as a cation exchanger from a triterpenoidal system of dammar gum: synthesis, characterization and application. Iran Polym J 25(8):671–685

    Article  CAS  Google Scholar 

  44. Jindal R, Kaith BS, Mittal H (2011) Rapid synthesis of acrylamide onto xanthan gum based hydrogels under microwave radiations for enhanced thermal and chemical modifications. Polym Renew Resour 2(3):105–116

    CAS  Google Scholar 

  45. Xu X, Bai Bo, Ding C, Wang H, Suo Y (2015) Synthesis and properties of an ecofriendly superabsorbent composite by grafting the poly (acrylic acid) onto the surface of dopamine-coated sea buckthorn branches. Ind Eng Chem Res 54(13):3268–3278

    Article  CAS  Google Scholar 

  46. Kaith BS, Jindal R, Jana AK, Maiti M (2009) Characterization and evaluation of methyl methacrylate-acetylated Saccharum spontaneum L. graft copolymers prepared under microwave. Carbohydr Polym 78(4):987–996

    Article  CAS  Google Scholar 

  47. Sharma B, Thakur S, Mamba G, Gupta RK, Gupta VK, Thakur VK (2021) Titania modified gum Tragacanth based hydrogel nanocomposite for water remediation. J Environ Chem Eng 9(1):104608

    Article  CAS  Google Scholar 

  48. Kaith BS, Shanker U, Gupta B (2020) Synergic effect of Guggul gum based hydrogel nanocomposite: an approach towards adsorption-photocatalysis of Magenta-O. Int J Biol Macromol 161:457–469

    Article  PubMed  Google Scholar 

  49. Ghanbari M, Salavati-Niasari M, Mohandes F, Firouzi Z (2022) Modified silicon carbide NPs reinforced nanocomposite hydrogels based on alginate-gelatin by with high mechanical properties for tissue engineering. Arab J Chem 15(1):103520

    Article  CAS  Google Scholar 

  50. Hassan W, Zafar M, Hassan H, Kamdem JP, Duarte AE, da Rocha JBT (2020) Ten years of Arabian journal of chemistry: a bibliometric analysis. Arab J Chem 13(11):7720–7743

    Article  CAS  Google Scholar 

  51. Zohuriaan-Mehr MJ, Motazedi Z, Kabiri K, Ershad-Langroudi A (2005) New super-absorbing hydrogel hybrids from gum arabic and acrylic monomers. J Macromol Sci, Part A 42(12):1655–1666

    Article  Google Scholar 

  52. Kaith BS, Sharma K, Kumar V, Kalia S, Swart HC (2014) Fabrication and characterization of gum ghatti-polymethacrylic acid based electrically conductive hydrogels. Synth Metals 187:61–67

    Article  CAS  Google Scholar 

  53. Hu X, Wei W, Qi X, Hao Yu, Feng L, Li J, Wang S, Zhang J, Dong W (2015) Preparation and characterization of a novel pH-sensitive Salecan-g-poly (acrylic acid) hydrogel for controlled release of doxorubicin. J Mater Chem B 3(13):2685–2697

    Article  CAS  PubMed  Google Scholar 

  54. Khan M, Shah LA, Rehman T, Khan A, Iqbal A, Ullah M, Alam S (2020) Synthesis of physically cross-linked gum Arabic-based polymer hydrogels with enhanced mechanical, load bearing and shape memory behavior. Iran Polym J 29:351–360

    Article  CAS  Google Scholar 

  55. Elliott JE, Macdonald M, Nie J, Bowman CN (2004) Structure and swelling of poly (acrylic acid) hydrogels: effect of pH, ionic strength, and dilution on the crosslinked polymer structure. Polymer 45(5):1503–1510

    Article  CAS  Google Scholar 

  56. Mankotia P, Sharma K, Sharma V, Mishra YK, Kumar V (2023) Curcumin-loaded Butea monosperma gum-based hydrogel: a new excipient for controlled drug delivery and anti-bacterial applications. Int J Biol Macromol 242:124703

    Article  CAS  PubMed  Google Scholar 

  57. Tiwari A, Grailer JJ, Pilla S, Steeber DA, Gong S (2009) Biodegradable hydrogels based on novel photopolymerizable guar gum–methacrylate macromonomers for in situ fabrication of tissue engineering scaffolds. Acta Biomater 5(9):3441–3452

    Article  CAS  PubMed  Google Scholar 

  58. Sharma K, Kumar V, Kaith BS, Kumar V, Som S, Kalia S, Swart HC (2015) Synthesis, characterization and water retention study of biodegradable Gum ghatti-poly (acrylic acid–aniline) hydrogels. Polym Degrad Stab 111:20–31

    Article  CAS  Google Scholar 

  59. Leja K, Lewandowicz G (2010) Polymer biodegradation and biodegradable polymers-a review. Polish J Environ Stud 19(2):255–265

    Google Scholar 

  60. Mittal H, Fosso-Kankeu E, Mishra SB, Mishra AK (2013) Biosorption potential of Gum ghatti-g-poly (acrylic acid) and susceptibility to biodegradation by B. subtilis. Int J Biol Macromol 62:370–378

    Article  CAS  PubMed  Google Scholar 

  61. Kaith BS, Shanker U, Gupta B (2019) One-pot green synthesis of polymeric nanocomposite: biodegradation studies and application in sorption-degradation of organic pollutants. J Environ Manag 234:345–356

    Article  Google Scholar 

  62. Mittal H, Mishra SB, Mishra AK, Kaith BS, Jindal R (2013) Flocculation characteristics and biodegradation studies of Gum Ghatti based hydrogels. Int J Biol Macromol 58:37–46

    Article  CAS  PubMed  Google Scholar 

  63. Khurana SK, Tiwari R, Sharun K, Yatoo MI, Gugjoo MB, Dhama K (2019) Emblica officinalis (Amla) with a particular focus on its antimicrobial potentials: a review. J Pure Appl Microbiol 13(4):1995–2014

    Article  CAS  Google Scholar 

  64. Vimala K, Yallapu MM, Varaprasad K, Narayana Reddy N, Ravindra S, Sudhakar Naidu N, Mohana Raju K (2011) Fabrication of curcumin encapsulated chitosan-PVA silver nanocomposite films for improved antimicrobial activity. J Biomater Nanobiotechnol 2(01):55

    Article  CAS  Google Scholar 

  65. Orooji Y, Ghanbari M, Amiri O, Salavati-Niasari M (2020) Facile fabrication of silver iodide/graphitic carbon nitride nanocomposites by notable photo-catalytic performance through sunlight and antimicrobial activity. J Hazard Mater 389:122079

    Article  CAS  PubMed  Google Scholar 

  66. Yousefi SR, Ghanbari M, Amiri O, Marzhoseyni Z, Mehdizadeh P, Hajizadeh-Oghaz M, Salavati-Niasari M (2021) Dy2BaCuO5/Ba4DyCu3O9. 09 S-scheme heterojunction nanocomposite with enhanced photocatalytic and antibacterial activities. J Am Ceram Soc 104(7):2952–2965

    Article  CAS  Google Scholar 

  67. Ghanbari M, Salavati-Niasari M (2021) Copper iodide decorated graphitic carbon nitride sheets with enhanced visible-light response for photocatalytic organic pollutant removal and antibacterial activities. Ecotoxicol Environ Saf 208:111712

    Article  CAS  PubMed  Google Scholar 

  68. Karami M, Ghanbari M, Amiri O, Salavati-Niasari M (2020) Enhanced antibacterial activity and photocatalytic degradation of organic dyes under visible light using cesium lead iodide perovskite nanostructures prepared by hydrothermal method. Sep Purif Technol 253:117526

    Article  CAS  Google Scholar 

  69. Karami M, Ghanbari M, Alshamsi HA, Rashki S, Salavati-Niasari M (2021) Facile fabrication of Tl 4 HgI 6 nanostructures as novel antibacterial and antibiofilm agents and photocatalysts in the degradation of organic pollutants. Inorg Chem Front 8(10):2442–2460

    Article  CAS  Google Scholar 

  70. Abkar E, Hassanpour M, Amiri O, Ghanbari M, Salavati-Niasari M (2021) Photocatalytic and antibacterial activities of Tl–Hg–I nanocomposites: sonochemical synthesis and characterization. RSC Adv 11(36):22238–22249

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

Download references

Acknowledgements

One of the authors (Vijay Kumar) acknowledges the financial support from the IIT Ropar Technology and Innovation Foundation for Agriculture and Water Technology Development Hub (AWaDH) (File Number: AWaDH-SpINe/IITRPR/2022/P10005/02).

Author information

Authors and Affiliations

Authors

Contributions

KF was involved in conceptualization, methodology, experimental design, and writing the original draft. VK contributed to synthesis, characterization, writing, review, editing, project administration, and funding acquisition. VS assisted with supervision, data curation, writing, review, and editing. MB contributed to the results analysis and article revision. VK was involved in supervision, writing, review, and editing. KS played a role in supervision, conceptualization, methodology, writing, review, and editing.

Corresponding authors

Correspondence to Vishal Sharma, Vaneet Kumar or Kashma Sharma.

Ethics declarations

Conflict of interest

We have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farooq, K., Kumar, V., Sharma, V. et al. Synthesis, optimization, and multifunctional evaluation of amla-based novel biodegradable hydrogel. Polym. Bull. (2024). https://doi.org/10.1007/s00289-024-05216-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00289-024-05216-x

Keywords

Navigation