Skip to main content
Log in

Synthesis and characterization of bio-nanocomposite hydrogel beads based on magnetic hydroxyapatite and chitosan: a pH-sensitive drug delivery system for potential implantable anticancer platform

  • ORIGINAL PAPER
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Magnetic bio-nanocomposite hydrogels are a promising platform for tissue engineering and drug delivery applications. This research presents the synthesis and characterization of novel magnetic bio-nanocomposite hydrogel beads based on magnetic hydroxyapatite nanoparticles and chitosan for potential pH-sensitive drug delivery. The successful synthesis was confirmed through various analysis methods. The prepared bio-nanocomposites hydrogel beads exhibited pH-sensitive swelling behavior. Furthermore, the bio-nanocomposites demonstrated a high loading capacity for doxorubicin (DOX) anticancer drug and a pH-sensitive drug release profile, with approximately 80% release rate at pH 5 and less than 10% release rate at pH 7.4. The Weibull kinetic model was the best-fitting function for DOX release from bio-nanocomposite hydrogels at pH 5. The cytotoxicity of DOX-loaded bio-nanocomposite hydrogels against HeLa cells was evaluated, which showed high cytotoxicity after incubation for 48 h at a concentration of 2.5 mg/mL. These findings suggest that the prepared magnetic bio-nanocomposite hydrogel beads have good potential for implantable pH-sensitive drug delivery in the treatment of cancerous tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author, upon reasonable request.

References

  1. Hirsch F, Scagliotti G, Mulshine J, Kwon R, Curran WJ Jr, Wu YL et al (2017) Lung cancer: current therapies and new targeted treatments. Lancet 389(10066):299–311

    Article  CAS  PubMed  Google Scholar 

  2. Korde LA, Somerfield MR, Carey LA, Crews JR, Denduluri N, Hwang ES, Khan SA, Loibl S, Morris EA, Perez A (2021) Neoadjuvant chemotherapy, endocrine therapy, and targeted therapy for breast cancer: ASCO guideline. J Clin Oncol 39(13):1485–1505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Saboury A, Mohammadi R, Javanbakht S, Ghorbani M (2023) Doxorubicin imprinted magnetic polymethacrylamide as a pH-sensitive anticancer nanocarrier. J Drug Deliv Sci Technol 79:103998

    Article  CAS  Google Scholar 

  4. Park H, Otte A, Park K (2022) Evolution of drug delivery systems: from 1950 to 2020 and beyond. J Control Release 342:53–65

    Article  CAS  PubMed  Google Scholar 

  5. Ghorpade VS, Yadav AV, Dias RJ (2017) Citric acid crosslinked β-cyclodextrin/carboxymethylcellulose hydrogel films for controlled delivery of poorly soluble drugs. Carbohydr Polym 164:339–348

    Article  CAS  PubMed  Google Scholar 

  6. Yang J, Chen J, Pan D, Wan Y, Wang Z (2013) pH-sensitive interpenetrating network hydrogels based on chitosan derivatives and alginate for oral drug delivery. Carbohydr Polym 92(1):719–725

    Article  CAS  PubMed  Google Scholar 

  7. Arokiasamy P, Abdullah MMAB, Abd Rahim SZ, Luhar S, Sandu AV, Jamil NH, Nabiałek M (2022) Synthesis methods of hydroxyapatite from natural sources: a review. Ceram Int 48(11):14959–14979

    Article  CAS  Google Scholar 

  8. DileepKumar V, Sridhar MS, Aramwit P, Krut’ko VK, Musskaya ON, Glazov IE, Reddy N (2022) A review on the synthesis and properties of hydroxyapatite for biomedical applications. J Biomater Sci Polym Ed 33(2):229–261

    Article  CAS  PubMed  Google Scholar 

  9. Nandi S, Roy S, Mukherjee P, Kundu B, De D, Basu D (2010) Orthopaedic applications of bone graft & graft substitutes: a review. Indian J Med Res 132(1):15–30

    CAS  PubMed  Google Scholar 

  10. Nandi SK, Mukherjee P, Roy S, Kundu B, De DK, Basu D (2009) Local antibiotic delivery systems for the treatment of osteomyelitis—a review. Mater Sci Eng C 29(8):2478–2485

    Article  CAS  Google Scholar 

  11. Kundu B, Soundrapandian C, Nandi SK, Mukherjee P, Dandapat N, Roy S, Datta BK, Mandal TK, Basu D, Bhattacharya RN (2010) Development of new localized drug delivery system based on ceftriaxone-sulbactam composite drug impregnated porous hydroxyapatite: a systematic approach for in vitro and in vivo animal trial. Pharm Res 27:1659–1676

    Article  CAS  PubMed  Google Scholar 

  12. Kundu B, Sinha MK, Mitra M, Basu D (2004) Fabrication and characterization of porous hydroxyapatite ocular implant followed by an in vivo study in dogs. Bull Mater Sci 27:133–140

    Article  CAS  Google Scholar 

  13. Ferraz M, Mateus A, Sousa J, Monteiro F (2007) Nanohydroxyapatite microspheres as delivery system for antibiotics: release kinetics, antimicrobial activity, and interaction with osteoblasts. J Biomed Mater Res Part A 81(4):994–1004

    Article  CAS  Google Scholar 

  14. Sibilla P, Sereni A, Aguiari G, Banzi M, Manzati E, Mischiati C, Trombelli L, Del Senno L (2006) Effects of a hydroxyapatite-based biomaterial on gene expression in osteoblast-like cells. J Dent Res 85(4):354–358

    Article  CAS  PubMed  Google Scholar 

  15. Dasgupta S, Bandyopadhyay A, Bose S (2009) Reverse micelle-mediated synthesis of calcium phosphate nanocarriers for controlled release of bovine serum albumin. Acta Biomater 5(8):3112–3121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Liu T-Y, Chen S-Y, Liu D-M, Liou S-C (2005) On the study of BSA-loaded calcium-deficient hydroxyapatite nano-carriers for controlled drug delivery. JCR 107(1):112–121

    Article  CAS  Google Scholar 

  17. Palazzo B, Iafisco M, Laforgia M, Margiotta N, Natile G, Bianchi CL, Walsh D, Mann S, Roveri N (2007) Biomimetic hydroxyapatite–drug nanocrystals as potential bone substitutes with antitumor drug delivery properties. Adv Funct Mater 17(13):2180–2188

    Article  CAS  Google Scholar 

  18. Zhu X, Eibl O, Scheideler L, Geis-Gerstorfer J (2006) Characterization of nano hydroxyapatite/collagen surfaces and cellular behaviors. J Biomed Mater Res 79(1):114–127

    Article  Google Scholar 

  19. Cai Y, Liu Y, Yan W, Hu Q, Tao J, Zhang M, Shi Z, Tang R (2007) Role of hydroxyapatite nanoparticle size in bone cell proliferation. J Mater Chem 17(36):3780–3787

    Article  CAS  Google Scholar 

  20. Schroeder KL, Goreham RV, Nann T (2016) Graphene quantum dots for theranostics and bioimaging. Pharm Res 33:2337–2357

    Article  CAS  PubMed  Google Scholar 

  21. Yousef T, Hassan N (2017) Supramolecular encapsulation of doxorubicin with β-cyclodextrin dendrimer: in vitro evaluation of controlled release and cytotoxicity. J Incl Phenom 87:105–115

    Article  CAS  Google Scholar 

  22. Timko BP, Dvir T, Kohane DS (2010) Remotely triggerable drug delivery systems. Adv Mater 22(44):4925–4943

    Article  CAS  PubMed  Google Scholar 

  23. Javanbakht S, Nabi M, Shaabani A (2021) Graphene quantum dots-crosslinked gelatin via the efficient Ugi four-component reaction: safe photoluminescent implantable carriers for the pH-responsive delivery of doxorubicin. Materialia 20:101233

    Article  CAS  Google Scholar 

  24. Ganapathe LS, Mohamed MA, Mohamadyunus R, Berhanuddin DD (2020) Magnetite (Fe3O4) nanoparticles in biomedical application: from synthesis to surface functionalisation. Magnetochemistry 6(4):68

    Article  CAS  Google Scholar 

  25. Mohammadi R, Saboury A, Javanbakht S, Foroutan R, Shaabani A (2021) Carboxymethylcellulose/polyacrylic acid/starch-modified Fe3O4 interpenetrating magnetic nanocomposite hydrogel beads as pH-sensitive carrier for oral anticancer drug delivery system. Eur Polymer J 153:110500

    Article  CAS  Google Scholar 

  26. Aladaghlo Z, Javanbakht S, Fakhari AR, Shaabani A (2021) Gelatin microsphere coated Fe3O4@ graphene quantum dots nanoparticles as a novel magnetic sorbent for ultrasound-assisted dispersive magnetic solid-phase extraction of tricyclic antidepressants in biological samples. Microchim Acta 188:1–9

    Article  Google Scholar 

  27. Nguyen MD, Tran H-V, Xu S, Lee TR (2021) Fe3O4 nanoparticles: structures, synthesis, magnetic properties, surface functionalization, and emerging applications. Appl Sci 11(23):11301

    Article  CAS  PubMed  Google Scholar 

  28. Bharath G, Madhu R, Chen S-M, Veeramani V, Mangalaraj D, Ponpandian N (2015) Solvent-free mechanochemical synthesis of graphene oxide and Fe3O4–reduced graphene oxide nanocomposites for sensitive detection of nitrite. J Mater Chem 3(30):15529–15539

    Article  CAS  Google Scholar 

  29. Majeed MI, Lu Q, Yan W, Li Z, Hussain I, Tahir MN, Tremel W, Tan B (2013) Highly water-soluble magnetic iron oxide (Fe3O4) nanoparticles for drug delivery: enhanced in vitro therapeutic efficacy of doxorubicin and MION conjugates. J Mater Chem B 1(22):2874–2884

    Article  CAS  PubMed  Google Scholar 

  30. Chen L, Wu L, Liu F, Qi X, Ge Y, Shen S (2016) Azo-functionalized Fe3O4 nanoparticles: a near-infrared light triggered drug delivery system for combined therapy of cancer with low toxicity. J Mater Chem B 4(21):3660–3669

    Article  CAS  PubMed  Google Scholar 

  31. Bharath G, Prabhu D, Mangalaraj D, Viswanathan C, Ponpandian N (2014) Facile in situ growth of Fe3O4 nanoparticles on hydroxyapatite nanorods for pH dependent adsorption and controlled release of proteins. RSC Adv 4(92):50510–50520

    Article  CAS  Google Scholar 

  32. Shan Z, Li X, Gao Y, Wang X, Li C, Wu Q (2012) Application of magnetic hydroxyapatite nanoparticles for solid phase extraction of plasmid DNA. Anal Biochem 425(2):125–127

    Article  CAS  PubMed  Google Scholar 

  33. Gu L, He X, Wu Z (2014) Mesoporous Fe3O4/hydroxyapatite composite for targeted drug delivery. Mater Res Bull 59:65–68

    Article  CAS  Google Scholar 

  34. Hou C-H, Hou S-M, Hsueh Y-S, Lin J, Wu H-C, Lin F-H (2009) The in vivo performance of biomagnetic hydroxyapatite nanoparticles in cancer hyperthermia therapy. Biomaterials 30(23–24):3956–3960

    Article  CAS  PubMed  Google Scholar 

  35. Zhan X, Teng W, Sun K, He J, Yang J, Tian J, Huang X, Zhou L, Zhou C (2021) CD47-mediated DTIC-loaded chitosan oligosaccharide-grafted nGO for synergistic chemo-photothermal therapy against malignant melanoma. Mater Sci Eng C 123:112014

    Article  CAS  Google Scholar 

  36. Wang W, Meng Q, Li Q, Liu J, Zhou M, Jin Z, Zhao K (2020) Chitosan derivatives and their application in biomedicine. Int J Mol Sci 21(2):487

    Article  PubMed  PubMed Central  Google Scholar 

  37. Vickers NJ (2017) Animal communication: when i’m calling you, will you answer too? Curr Biol 27(14):R713–R715

    Article  CAS  PubMed  Google Scholar 

  38. Fan X, Liang Y, Cui Y, Li F, Sun Y, Yang J, Song H, Bao Z, Nian R (2020) Development of tilapia collagen and chitosan composite hydrogels for nanobody delivery. Colloids Surf B Biointerfaces 195:111261

    Article  CAS  PubMed  Google Scholar 

  39. Xie P, Liu P (2020) pH-responsive surface charge reversal carboxymethyl chitosan-based drug delivery system for pH and reduction dual-responsive triggered DOX release. Carbohydr Polym 236:116093

    Article  CAS  PubMed  Google Scholar 

  40. Nejadshafiee V, Naeimi H, Goliaei B, Bigdeli B, Sadighi A, Dehghani S, Lotfabadi A, Hosseini M, Nezamtaheri MS, Amanlou M (2019) Magnetic bio-metal–organic framework nanocomposites decorated with folic acid conjugated chitosan as a promising biocompatible targeted theranostic system for cancer treatment. Mater Sci Eng C 99:805–815

    Article  CAS  Google Scholar 

  41. Dacrory S, Hashem AH, Kamel S (2022) Antimicrobial and antiviral activities with molecular docking study of chitosan/carrageenan@ clove oil beads. Biotechnol J 17(2):2100298

    Article  CAS  Google Scholar 

  42. Monti S, Jose J, Sahajan A, Kalarikkal N, Thomas S (2019) Structure and dynamics of gold nanoparticles decorated with chitosan–gentamicin conjugates: ReaxFF molecular dynamics simulations to disclose drug delivery. PCCP 21(24):13099–13108

    Article  CAS  PubMed  Google Scholar 

  43. Javanbakht S, Shaabani A (2019) Encapsulation of graphene quantum dot-crosslinked chitosan by carboxymethylcellulose hydrogel beads as a pH-responsive bio-nanocomposite for the oral delivery agent. Int J Biol Macromol 123:389–397

    Article  CAS  PubMed  Google Scholar 

  44. Sun X, Liu C, Omer A, Yang L-Y, Ouyang X-K (2019) Dual-layered pH-sensitive alginate/chitosan/kappa-carrageenan microbeads for colon-targeted release of 5-fluorouracil. Int J Biol Macromol 132:487–494

    Article  CAS  PubMed  Google Scholar 

  45. Brito E, Gomes D, Cid CP, de Araújo J, Bohn F, Streck L, Fonseca J (2019) Superparamagnetic magnetite/IPEC particles. Colloids Surf A 560:376–383

    Article  CAS  Google Scholar 

  46. Ernani Filho D, Brito EL, Nogueira DO, Fonseca JL (2021) Thermal degradation and drug sorption in hybrid interpolyelectrolyte particles. Colloids Surf A Physicochem Eng Asp 610:125894

    Article  Google Scholar 

  47. Govindan B, Swarna Latha B, Nagamony P, Ahmed F, Saifi MA, Harrath AH, Alwasel S, Mansour L, Alsharaeh EH (2017) Designed synthesis of nanostructured magnetic hydroxyapatite based drug nanocarrier for anti-cancer drug delivery toward the treatment of human epidermoid carcinoma. Nanomaterials 7(6):138

    Article  PubMed  PubMed Central  Google Scholar 

  48. Barzegarzadeh M, Amini-Fazl MS, Sohrabi N (2023) Ultrasound-assisted adsorption of chlorpyrifos from aqueous solutions using magnetic chitosan/graphene quantum dot-iron oxide nanocomposite hydrogel beads in batch adsorption column and fixed bed. Int J Biol Macromol 242:124587

    Article  CAS  PubMed  Google Scholar 

  49. Kim J, Sambudi NS, Cho K (2019) Removal of Sr2+ using high-surface-area hydroxyapatite synthesized by non-additive in-situ precipitation. J Environ Manage 231:788–794

    Article  CAS  PubMed  Google Scholar 

  50. Javanbakht S, Shadi M, Mohammadian R, Shaabani A, Ghorbani M, Rabiee G, Amini MM (2020) Preparation of Fe3O4@ SiO2@ tannic acid double core-shell magnetic nanoparticles via the Ugi multicomponent reaction strategy as a pH-responsive co-delivery of doxorubicin and methotrexate. Mater Chem Phys 247:122857

    Article  CAS  Google Scholar 

  51. Kong A, Wang P, Zhang H, Yang F, Huang S, Shan Y (2012) One-pot fabrication of magnetically recoverable acid nanocatalyst, heteropolyacids/chitosan/Fe3O4, and its catalytic performance. Appl Catal 417:183–189

    Article  Google Scholar 

  52. Mahire VN, Patil GP, Deore AB, Chavan PG, Jirimali HD, Mahulikar PP (2018) Sulfonated chitosan-encapsulated HAp@ Fe3O4: an efficient and recyclable magnetic nanocatalyst for rapid eco-friendly synthesis of 2-amino-4-substituted-1, 4-dihydrobenzo [4, 5] imidazo [1, 2-a] pyrimidine-3-carbonitriles. Res Chem Intermed 44:5801–5815

    Article  CAS  Google Scholar 

  53. Huang X, Xiao Y, Lang M (2012) Micelles/sodium-alginate composite gel beads: a new matrix for oral drug delivery of indomethacin. Carbohydr Polym 87(1):790–798

    Article  CAS  PubMed  Google Scholar 

  54. Joschek S, Nies B, Krotz R, Göpferich A (2000) Chemical and physicochemical characterization of porous hydroxyapatite ceramics made of natural bone. Biomater 21(16):1645–1658

    Article  CAS  Google Scholar 

  55. Bajpai S, Kirar N (2016) Swelling and drug release behavior of calcium alginate/poly (sodium acrylate) hydrogel beads. Des Monomers Polym 19(1):89–98

    Article  CAS  Google Scholar 

  56. Berger J, Reist M, Mayer JM, Felt O, Peppas N, Gurny R (2004) Structure and interactions in covalently and ionically crosslinked chitosan hydrogels for biomedical applications. Eur J Pharm Biopharm 57(1):19–34

    Article  CAS  PubMed  Google Scholar 

  57. Peppas NA, Sahlin JJ (1989) A simple equation for the description of solute release. III. Coupling of diffusion and relaxation. Int J Pharm 57(2):169–172

    Article  CAS  Google Scholar 

  58. W. Weibull (1951) A statistical distribution function of wide applicability. J. Appl. Mech.

  59. Petros RA, Ropp PA, DeSimone JM (2008) Reductively labile PRINT particles for the delivery of doxorubicin to HeLa cells. J Am Chem Soc 130(15):5008–5009

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors express their sincere gratitude to the University of Tabriz for providing financial

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Sadegh Amini-Fazl.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Consent for publication

Not applicable.

Consent to participate

Not applicable.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 686 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bakhshi, V., Poursadegh, H., Amini-Fazl, M.S. et al. Synthesis and characterization of bio-nanocomposite hydrogel beads based on magnetic hydroxyapatite and chitosan: a pH-sensitive drug delivery system for potential implantable anticancer platform. Polym. Bull. 81, 7499–7518 (2024). https://doi.org/10.1007/s00289-023-05072-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-023-05072-1

Keywords

Navigation