Skip to main content
Log in

Development of ciprofloxacin-loaded polymeric nanoparticles for drug delivery

  • ORIGINAL PAPER
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Studies in which polymeric nanoparticles are used in drug delivery have been one of the subjects of interest in recent years. In this study, histidine-containing polymeric nanoparticles [poly(2-hydroxyethyl methacrylate-co-N-methacryloylamido histidine methyl ester)] were synthesized by surfactant free emulsion polymerization method. Ciprofloxacin was loaded onto the HPCNs surface [CIP-HCPNs]. In the characterization of CIP-HCPNs, scanning electron microscopy, Fourier-infrared analysis, surface area calculations and zeta potential analysis were used. FT-IR data of histidine-free polymeric nanoparticles [HFPNs] and HCPNs demonstrated the successful addition of Histidine to polymeric nanoparticles. SEM images showed that CIP-HCPNs had a size of 131.2 nm with a spherical shape. As a result of Zeta potential studies, the polydispersity index (PDI) of CIP-HCPNs was found to be 0.11, indicating that CIP-HCPNs have a narrowly spaced size distribution. CIP release from CIP-HCNPs showed slow-release properties. At pH 7.4, cumulative CIP release from CIP-HCPNs was 96% (283.35 mg/g) within 6 h, with full drug release achieved at 24 h. It was stated that the drug release kinetic data obtained from CIP release experiments fit the Hixson-Crowell model, and in this model, CIP release from CIP-HCPNs occurred as the square root of the time dependent process based on Fickian diffusion. As a result, CIP-HCNPs developed in the current study, it can be said that it is suitable for drug release.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Aldred KJ, Kerns RJ (2014) Mechanism of Quinolone action and resistance. Biochemistry 53:1565–1574

    Article  CAS  PubMed  Google Scholar 

  2. Singh B, Sharma N, Sharma V (2011) Slow release of ciprofloxacin from double potential drug delivery system. J Mater Sci 46:2587–2599. https://doi.org/10.1007/s10853-010-5111-2

    Article  CAS  Google Scholar 

  3. Lindenberg M, Kopp S, Dressman JB (2004) Classification of orally administered drugs on the World Health Organization model list of essential medicines according to the biopharmaceutics classification system. Eur J Pharm Biopharm 58:265–278. https://doi.org/10.1016/j.ejpb.2004.03.001

    Article  PubMed  Google Scholar 

  4. Hosseini-Ashtiani N, Tadjarodi A, Zare-Dorabei R (2021) Low molecular weight chitosan-cyanocobalamin nanoparticles for controlled delivery of ciprofloxacin: preparation and evaluation. Int J Biol Macromol 176:459–467. https://doi.org/10.1016/j.ijbiomac.2021.02.093

    Article  CAS  PubMed  Google Scholar 

  5. Rizvi SAA, Saleh AM (2018) Applications of nanoparticle systems in drug delivery technology. Saudi Pharm J 26(1):64–70. https://doi.org/10.1016/j.jsps.2017.10.012

    Article  PubMed  Google Scholar 

  6. Karakoc V, Yılmaz E, Türkmen D, Öztürk N, Akgöl S, Denizli A (2009) Selective separation of human serum albumin with copper (II) chelated poly (hydroxyethyl methacrylate) based nanoparticles. Int J Biol Macromol 45(2):188–193. https://doi.org/10.1016/j.ijbiomac.2009.04.023

    Article  CAS  PubMed  Google Scholar 

  7. Lenders V, Koutsoumpou X, Sargsian A, Manshian BB (2020) Biomedical nanomaterials for immunological applications: ongoing research and clinical trials. Nanoscale Adv 2(11):5046–5089. https://doi.org/10.1039/d0na00478b

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Akgöl S, Öztürk N, Denizli A (2010) New generation polymeric nanospheres for lysozyme adsorption. J Appl Polym Sci 115(3):1608–1615. https://doi.org/10.1002/app.31294

    Article  CAS  Google Scholar 

  9. Cobos M, De-La-Pinta I, Quindós G, Fernández MJ, Fernández MD (2020) Graphene oxide–silver nanoparticle nanohybrids: Synthesis, characterization, and antimicrobial properties. Nanomaterials 10(2):376. https://doi.org/10.3390/nano10020376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kuru CI, Ulucan F, Kuşat K, Akgöl S (2020) A model study by using polymeric molecular imprinting nanomaterials for removal of penicillin G. Environ Monit Assess 192(6):1–16. https://doi.org/10.1007/s10661-020-08294-2

    Article  CAS  Google Scholar 

  11. Avcıbaşı U, Ateş B, Ünak P, Gümüşer FG, Gülcemal S, Ol KK, Tekin V (2019) A novel radiolabeled graft polymer: Investigation of the radiopharmaceutical potential using Albino Wistar rats. Appl Radiat Isotopes 154:108872. https://doi.org/10.1016/j.apradiso.2019.108872

    Article  CAS  Google Scholar 

  12. Avcıbaşı U, Türkyarar T, Karadağ A, Bakan B, Yavaşoğlu NÜK, Kuşat K, Gümüşer FG (2021) Preparation of a 99mTc-labeled graft polymer and its in vitro and in vivo evaluation. J Radioanal Nucl Chem 329(2):511–525. https://doi.org/10.1007/s10967-021-07817-6

    Article  CAS  Google Scholar 

  13. Jarai BM, Stillman Z, Attia L, Decker GE, Bloch ED, Fromen CA (2020) Evaluating UiO-66 metal–organic framework nanoparticles as acid-sensitive carriers for pulmonary drug delivery applications. ACS Appl Mater Interfaces 12(35):38989–39004. https://doi.org/10.1021/acsami.0c10900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Mesallati H, Tajber L (2017) Polymer/amorphous salt solid dispersions of ciprofloxacin. Pharm Res 34:2425–2439. https://doi.org/10.1007/s11095-017-2250-z

    Article  CAS  PubMed  Google Scholar 

  15. Chen G, Ali F, Dong S, Yin Z, Li S, Chen Y (2018) Preparation, characterization and functional evaluation of chitosan-based films with zein coatings produced by cold plasma. Carbohyd Polym 202:39–46. https://doi.org/10.1016/j.carbpol.2018.08.122

    Article  CAS  Google Scholar 

  16. Manea YK, Khan AM, Qashqoosh MT, Wani AA, Shahadat M (2019) Ciprofloxacin-supported chitosan/polyphosphate nanocomposite to bind bovine serum albumin: its application in drug delivery. J Mol Liq 292:111337. https://doi.org/10.1016/j.molliq.2019.111337

    Article  CAS  Google Scholar 

  17. Ghazaie M, Ghiaci M, Soleimanian-Zad S, Behzadi-Teshnizi S (2019) Preparing natural biocomposites of N-quaternary chitosan with antibacterial activity to reduce consumption of antibacterial drugs. J Hazard Mater 371:224–232. https://doi.org/10.1016/j.jhazmat.2019.03.003

    Article  CAS  PubMed  Google Scholar 

  18. Elbi S, Nimal TR, Rajan VK, Baranwal G, Biswas R, Jayakumar R, Sathianarayanan S (2017) Fucoidan coated ciprofloxacin loaded chitosan nanoparticles for the treatment of intracellular and biofilm infections of Salmonella. Colloids Surf B 160:40–47. https://doi.org/10.1016/j.colsurfb.2017.09.003

    Article  CAS  Google Scholar 

  19. Hanna DH, Saad GR (2019) Encapsulation of ciprofloxacin within modified xanthan gum- chitosan based hydrogel for drug delivery. Bioorg Chem 84:115–124. https://doi.org/10.1016/j.bioorg.2018.11.036

    Article  CAS  PubMed  Google Scholar 

  20. Mahdavinia GR, Karimi MH, Soltaniniya M, Massoumi B (2019) In vitro evaluation of sustained ciprofloxacin release from κ-carrageenan-crosslinked chitosan/hydroxyapatite hydrogel nanocomposites. Int J Biol Macromol 126:443–453. https://doi.org/10.1016/j.ijbiomac.2018.12.240

    Article  CAS  PubMed  Google Scholar 

  21. Hussein-Al-Ali SH, Abudoleh SM, Abualassal QIA, Abudayeh Z, Aldalahmah Y, Hussein MZ (2022) Preparation and characterisation of ciprofloxacin-loaded silver nanoparticles for drug delivery. IET Nanobiotechnol 16(3):92–101. https://doi.org/10.1049/nbt2.12081

    Article  PubMed  PubMed Central  Google Scholar 

  22. Urquhart AJ, Eriksen AZ (2019) Recent developments in liposomal drug delivery systems for the treatment of retinal diseases. Drug Discov Today 24(8):1660–1668. https://doi.org/10.1016/j.drudis.2019.04.004

    Article  CAS  PubMed  Google Scholar 

  23. Lingayat VJ, Zarekar NS, Shendge RS (2017) Solid lipid nanoparticles: a review. Nanosci Nanotechnol Res 4(2):67–72. https://doi.org/10.9790/3013-26103444

    Article  Google Scholar 

  24. Rodríguez Villanueva J, Navarro MG, Rodríguez Villanueva L (2016) Dendrimers as a promising tool in ocular therapeutics: latest advances and perspectives. Int J Pharm 511(1):359–366. https://doi.org/10.1016/j.ijpharm.2016.07.031

    Article  CAS  PubMed  Google Scholar 

  25. Mandal A, Bisht R, Rupenthal ID, Mitra AK (2017) Polymeric micelles for ocular drug delivery: from structural frameworks to recent preclinical studies. J Control Release 248:96–116. https://doi.org/10.1016/j.jconrel.2017.01.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Assali M, Zaid AN, Abdallah F, Almasri M, Khayyat R (2017) Single-walled carbon nanotubes-ciprofloxacin nanoantibiotic: strategy to improve ciprofloxacin antibacterial activity. Int J Nanomed 12:6647. https://doi.org/10.2147/IJN.S140625

    Article  CAS  Google Scholar 

  27. Sreedharan SM, Singh R (2019) Ciprofloxacin functionalized biogenic gold nanoflowers as nanoantibiotics against pathogenic bacterial strains. Int J Nanomed 14:9905–9916. https://doi.org/10.2147/IJN.S224488

    Article  CAS  Google Scholar 

  28. Akbari V, Abedi D, Pardakhty A, Sadeghi-Aliabadi H (2013) Ciprofloxacin nano-niosomes for targeting intracellular infections: an in vitro evaluation. J Nanopart Res 15(4):1–14. https://doi.org/10.1007/s11051-013-1556-y

    Article  CAS  Google Scholar 

  29. Topal GR, Devrim B, Eryilmaz M, Bozkir A (2018) Design of ciprofloxacin-loaded nano-and microcomposite particles for dry powder inhaler formulations: preparation, in vitro characterisation, and antimicrobial efficacy. J Microencapsul 35(6):533–547. https://doi.org/10.1080/02652048.2018.1523970

    Article  CAS  PubMed  Google Scholar 

  30. Akgol S, Oztürk N, Denizli A (2009) New generation polymeric nanospheres for catalase immobilization. J Appl Polym Sci 114(2):962–970. https://doi.org/10.1002/app.29790

    Article  CAS  Google Scholar 

  31. Çorman ME, Öztürk N, Bereli N, Akgöl S, Denizli A (2010) Preparation of nanoparticles which contains histidine for immobilization of Trametes versicolor laccase. J Mol Catal B Enzym 63(1–2):102–107. https://doi.org/10.1016/j.molcatb.2009.12.017

    Article  CAS  Google Scholar 

  32. Akgöl S, Öztürk N, Karagözler AA, Uygun DA, Uygun M, Denizli A (2008) A new metal-chelated beads for reversible use in uricase adsorption. J Mol Catal B Enzym 51(1–2):36–41. https://doi.org/10.1016/j.molcatb.2007.10.005

    Article  CAS  Google Scholar 

  33. Korsmeyer RW, Peppas NA (1984) Solute and penetrant diffusion in swellable polymers. III. Drug release from glassy poly(HEMA-co-NVP) copolymers. J Control Release 1(2):89–98. https://doi.org/10.1016/0168-3659(84)90001-4

    Article  CAS  Google Scholar 

  34. Shoaib MH, Tazeen J, Merchant HA, Yousuf RI (2006) Evaluation of drug release kinetics from ibuprofen matrix tablets using HPMC. Pak J Pharm Sci 19(2):119–124

    CAS  PubMed  Google Scholar 

  35. Hixson AW, Crowell JH (1931) Dependence of reaction velocity upon surface and agitation: III—experimental procedure in study of agitation. Ind Eng Chem 23(10):1160–1168. https://doi.org/10.1021/ie50262a025

    Article  CAS  Google Scholar 

  36. Higuchi T (1963) Mechanism of sustained-action medication. J Pharm Sci 52:1145–1149. https://doi.org/10.1002/jps.2600521210

    Article  CAS  PubMed  Google Scholar 

  37. Dehkhoda S, Bagheri M, Heydari M, Rabieh S (2022) Extraction of carboxylated nanocellulose from oat husk: characterization, surface modification and in vitro evaluation of indomethacin drug release. Int J Biol Macromol 212:165–171

    Article  CAS  PubMed  Google Scholar 

  38. Siepmann J, Peppas NA (2012) Modeling of drug release from delivery systems based on hydroxypropyl methylcellulose (HPMC). Adv Drug Deliv Rev 64:163–174. https://doi.org/10.1016/j.addr.2012.09.028

    Article  Google Scholar 

  39. Xu R (2008) Progress in nanoparticles characterization: Sizing and zeta potential measurement. Particuology 6(2):112–115. https://doi.org/10.1016/j.partic.2007.12.002

    Article  CAS  Google Scholar 

  40. Sharma PC (2010) Ciprofloxacin: review on developments in synthetic, analytical, and medicinal aspects. J Enzyme Inhib Med Chem 25(4):577–589. https://doi.org/10.3109/14756360903373350

    Article  CAS  PubMed  Google Scholar 

  41. Talan DA, Naber KG, Palou J, Elkharrat D (2004) Extended-release ciprofloxacin (Cipro XR) for treatment of urinary tract infections. Int J Antimicrob Agents 23:54–66. https://doi.org/10.1016/j.ijantimicag.2003.12.005

    Article  CAS  Google Scholar 

  42. Uhljar LÉ, Kan SY, Radacsi N, Koutsos V, Szabó-Révész P, Ambrus R (2021) In vitro drug release, permeability, and structural test of ciprofloxacin-loaded nanofibers. Pharmaceutics 13(4):556. https://doi.org/10.3390/pharmaceutics130405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Liechty WB, Kryscio DR, Slaughter BV, Peppas NA (2010) Polymers for drug delivery systems. Annu Rev Chem Biomol Eng 1:149. https://doi.org/10.1146/annurev-chembioeng-073009-100847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Authors would like to thank Canser Kuşat Lanpir for drawing the images in the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevser Kuşat.

Ethics declarations

Conflict of interest

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuşat, K., Akgöl, S. Development of ciprofloxacin-loaded polymeric nanoparticles for drug delivery. Polym. Bull. 81, 6555–6569 (2024). https://doi.org/10.1007/s00289-023-05021-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-023-05021-y

Keywords

Navigation