Skip to main content
Log in

A model study by using polymeric molecular imprinting nanomaterials for removal of penicillin G

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

We aimed to develop a molecularly imprinted polymeric systems with using penicillin G as a template molecule for removal of the antibiotic residues from environmental samples. Firstly, Pen-G-imprinted poly (2-hydroxyethyl methacrylate-N-methacryloyl-l-alanine) [p(HEMA-MAAL)] nanopolymers were synthesized by surfactant-free emulsion polymerization method. Then, template molecule (Pen-G) was extracted from nanopolymers. Synthesized nanopolymers were characterized by different methods such as Fourier-transform infrared spectroscopy (FTIR), elemental and zeta-size analysis, scanning electron microscope (SEM), and surface area calculations. Nanopolymers have 60.38 nm average size and 1034.22 m2/g specific surface area. System parameters on Pen-G adsorption onto Pen-G imprint nanopolymers were investigated at different conditions. The specific adsorption value (Qmax) of molecularly impirinted p(HEMA-MAAL) nanopolymers was found 71.91 g/g for Pen-G in 5 mg/mL Pen-G initial concentration. Pen-G adsorption of molecularly imprinted nanopolymers was 15 times more than non-imprinted polymer. It is shown that obtained p(HEMA-MAAL) nanopolymer was a reuseable product which protected its adsorption capacity of 98.9% after 5th adsorption-desorption cycle. In conclusion, we suggest a method to develop a nanostructure, selective, low-cost molecularly imprinted polymeric systems with using penicillin G as a template molecule for removal of the antibiotic residues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Aqda, T. G., Behkami, S., Raoofi, M., & Bagheri, H. (2019). Graphene oxide-starch-based micro-solid phase extraction of antibiotic residues from milk samples. Journal of Chromatography A, 1591, 7–14.

    Google Scholar 

  • Aktas-Uygun, D., Uygun, M., Altintas, Z., & Akgol, S. (2017). Applications of molecularly imprinted nanostructures in biosensors and medical diagnosis. Biosensors and Nanotechnology: Applications in Health Care Diagnostics.

  • Ayawei, N., Ebelegi, A. N., & Wankasi, D. (2017). Modelling and interpretation of adsorption isotherms. Journal of Chemistry, 2017, 1–11.

    Google Scholar 

  • Bangs, L. B. (1989) Uniform latex particles. 41th National meeting. American Association for Clinical Chemistry, Seragen Diagnostics, Indianapolis.

  • Briscoe, S. E., McWhinney, B. C., Lipman, J., Roberts, J. A., & Ungerer, J. P. J. (2012). A method for determining the free (unbound) concentration of ten beta-lactam antibiotics in human plasma using high performance liquid chromatography with ultraviolet detection. Journal of Chromatography B, 907, 178–184pp.

    CAS  Google Scholar 

  • Bulut, Y., Gözübenli, N., & Aydın, H. (2007). Equilibrium and kinetics studies for adsorption of direct blue 71 from aqueous solution by wheat shells. Journal of Hazardous Materials, 144, 300–306pp.

    CAS  Google Scholar 

  • Cederfur, J., Pei, Y., Zihui, M., & Kempe, M. (2003). Synthesis and screening of a molecularly imprinted polymer library targeted for penicillin G. Journal of Combinatorial Chemistry, 5, 67–72pp.

    CAS  Google Scholar 

  • Congur, G., Senay, H., Turkcan, C., Canavar, E., Erdem, A., & Akgol, S. (2013). Estrone specific molecularly imprinted polymeric nanospheres: Synthesis, characterization and applications for electrochemical sensor development. Combinatorial Chemistry & High Throughput Screening, 16(7), 503–510.

    CAS  Google Scholar 

  • Çorman, M. E., & Akgöl, S. (2012). Preparation of molecular imprinted hydrophobic polymeric nanoparticles having structural memories for lysozyme recognition. Artificial Cells, Blood Substitutes, and Biotechnology, 40(4), 245–255.

    Google Scholar 

  • Díaz-Bao, M., Barreiro, R., Miranda, J. M., Cepeda, A., & Regal, P. (2015). Fast HPLC-MS/MS method for determining penicillin antibiotics in infant formulas using molecularly imprinted solid-phase extraction. Journal of Analytical Methods in Chemistry, 2015.

  • Dincer, S., & Yigittekin, E. S. (2017). Spreading of antibiotic resistance with wastewater. Biological Wastewater Treatment and Resource Recovery, 73.

  • Ertürk, G., & Mattiasson, B. (2016). From imprinting to microcontact imprinting—a new tool to increase selectivity in analytical devices. Journal of Chromatography B, 1021, 30–44.

    Google Scholar 

  • Fan, H., Wang, J., Meng, Q., Xu, X., Fan, T., & Jin, Z. (2017). Preparation of photoirradiation molecular imprinting polymer for selective separation of branched cyclodextrins. Molecules, 22(2), 288.

    Google Scholar 

  • Foo, K. Y., & Hameed, B. H. (2010). Insights into the modeling of adsorption isotherm systems. Chemical Engineering Journal, 156(1), 2–10.

    CAS  Google Scholar 

  • Gao, R., Kong, X., Su, F., He, X., Chen, L., & Zhang, Y. (2010). Synthesis and evaluation of molecularly imprinted core–shell carbon nanotubes for the determination of triclosan in environmental water samples. Journal of Chromatography A, 1217(52), 8095–8102.

    CAS  Google Scholar 

  • Garipcan, B., Bereli, N., Pator, S., Arıca, Y., & Denizli, A. (2001). Synthesis of poly[(hydroxyethyl methacrylate)-co-(methacrylamidoalanine)] membranes and their utilization as an affinity sorbent for lysozyme. Macromolecular Bioscience, 1, 332–340pp.

    CAS  Google Scholar 

  • Ghose, S., Hubbard, B. B., & Cramer, S. M. (2005). Protein interactions in hydrophobic charge induction chromatography (HCIC). Biotechnology Progress, 21, 498pp.

    Google Scholar 

  • Guardia, L., Badía-Laíño, R., Díaz-García, M. E., Ania, C. O., & Parra, J. B. (2008). Role of surface adsorption and porosity features in the molecular recognition ability of imprinted sol–gels. Biosensors and Bioelectronics, 23(7), 1101–1108.

    CAS  Google Scholar 

  • Inanan, T., Tüzmen, N., Akgöl, S., & Denizli, A. (2016). Selective cholesterol adsorption by molecular imprinted polymeric nanospheres and application to GIMS. International Journal of Biological Macromolecules, 92, 451–460.

    CAS  Google Scholar 

  • Instruments, M. (2004). Zetasizer nano series user manual. MAN0317, 1, 2004.

  • Inyinbor, A. A., Adekola, F. A., & Olatunji, G. A. (2016). Kinetics, isotherms and thermodynamic modeling of liquid phase adsorption of Rhodamine B dye onto Raphia hookerie fruit epicarp. Water Resources and Industry, 15, 14–27.

    Google Scholar 

  • Jalili, R., Khataee, A., Rashidi, M. R., & Razmjou, A. (2020). Detection of penicillin G residues in milk based on dual-emission carbon dots and molecularly imprinted polymers. Food Chemistry, 126172.

  • Javanbakht, M., Pishro, K.A., Nasab, A.M., Akbari-adergani, B. (2012). Extraction and purification of penicillin G from fermentation broth by water-compatible molecularly imprinted polymers. Materials Science and Engineering C, 32:2367–2373pp

  • Joshi, S. (2002). HPLC separation of antibiotics present in formulated and unformulated samples. Journal of Pharmaceutical and Biomedical Analysis, 28(5), 795–809.

    CAS  Google Scholar 

  • Kamranifar, M., Allahresani, A., & Naghizadeh, A. (2019). Synthesis and characterizations of a novel CoFe2O4@ CuS magnetic nanocomposite and investigation of its efficiency for photocatalytic degradation of penicillin G antibiotic in simulated wastewater. Journal of Hazardous Materials, 366, 545–555.

    CAS  Google Scholar 

  • Karaseva, N., Ermolaeva, T., & Mizaikoff, B. (2016). Piezoelectric sensors using molecularly imprinted nanospheres for the detection of antibiotics. Sensors and Actuators B: Chemical, 225, 199–208.

    CAS  Google Scholar 

  • Koch, C., Poghossian, A., Schöning, M. J., & Wege, C. (2018). Penicillin detection by tobacco mosaic virus-assisted colorimetric biosensors. Nanotheranostics, 2(2), 184–196.

    Google Scholar 

  • Kraemer, S. A., Ramachandran, A., & Perron, G. G. (2019). Antibiotic pollution in the environment: from microbial ecology to public policy. Microorganisms, 7(6), 180.

    CAS  Google Scholar 

  • Kuru, C. İ., Türkcan, C., Uygun, M., Okutucu, B., & Akgöl, S. (2014). Preparation and characterization of silanized poly(HEMA) nanopolymers for recognition of sugars. Artificial Cells, Nanomedicine, and Biotechnology, 44, 835–841.

    Google Scholar 

  • Lata, K., Sharma, R., Naik, L., Rajput, Y. S., & Mann, B. (2015). Synthesis and application of cephalexin imprinted polymer for solid phase extraction in milk. Food Chemistry, 184, 176–182.

    CAS  Google Scholar 

  • Lingzhi, L., Haojie, G., Dan, G., Hongmei, M., Yang, L., Mengdie, J., Chengkun, Z., & Xiaohui, Z. (2018). The role of two-component regulatory system in β-lactam antibiotics resistance. Microbiological Research, 215, 126–129.

    CAS  Google Scholar 

  • Lobanovska, M., & Pilla, G. (2017). Focus: Drug development: Penicillin’s discovery and antibiotic resistance: Lessons for the future? The Yale Journal of Biology and Medicine, 90(1), 135.

    CAS  Google Scholar 

  • Luo, Z., Du, W., Zheng, P., Guo, P., Wu, N., Tang, W., et al. (2015). Molecularly imprinted polymer cartridges coupled to liquid chromatography for simple and selective analysis of penicilloic acid and penilloic acid in milk by matrix solid-phase dispersion. Food and Chemical Toxicology, 83, 164–173.

    CAS  Google Scholar 

  • Luo, Z., Zeng, A., Zheng, P., Guo, P., Du, W., Du, K., & Fu, Q. (2014). Preparation of surface molecularly imprinted polymers as the solid-phase extraction sorbents for the specific recognition of penicilloic acid in penicillin. Analytical Methods, 6(19), 7865–7874.

    CAS  Google Scholar 

  • Malkoç, E. (2006). Ni(II) removal from aqueous solutions using cone biomass of Thuja orientalis. Journal of Hazardous Materials, 137, 899–908pp.

    Google Scholar 

  • Mohsenzadeh, M. S., Mohammadinejad, A., & Mohajeri, S. A. (2018). Simple and selective analysis of different antibiotics in milk using molecularly imprinted polymers: a review. Food Additives & Contaminants: Part A, 1–16.

  • Moreno-González, D., Rodríguez-Ramírez, R., del Olmo-Iruela, M., & García-Campaña, A. M. (2017). Validation of a new method based on salting-out assisted liquid-liquid extraction and UHPLC-MS/MS for the determination of betalactam antibiotics in infant dairy products. Talanta, 167, 493–498.

    Google Scholar 

  • Ncube, S., Madikizela, L. M., Nindi, M. M., & Chimuka, L. (2019). Solid phase extraction technique as a general field of application of molecularly imprinted polymer materials. Mip synthesis, characteristics and analytical application, 41.

  • Okocha, R. C., Olatoye, I. O., & Adedeji, O. B. (2018). Food safety impacts of antimicrobial use and their residues in aquaculture. Public Health Reviews, 39(1), 1–22.

    Google Scholar 

  • Olcer, Y. A., Demirkurt, M., Demir, M. M., & Eroglu, A. E. (2017). Development of molecularly imprinted polymers (MIPs) as a solid phase extraction (SPE) sorbent for the determination of ibuprofen in water. RSC Advances, 7(50), 31441–31447.

    CAS  Google Scholar 

  • Paulino, A. T., Minasse, F. A. S., Guilherme, M. R., Reis, A. V., Muniz, E. C., & Nozaki, J. (2006). Novel adsorbent based on silkworm chrysalides for removal of heavy metals from wastewaters. Journal of Colloid and Interface Science, 301, 479–487pp.

    CAS  Google Scholar 

  • Pinder, N., Brenner, T., Swoboda, S., Weigand, M. A., & Hoppe-Tichy, T. (2017). Therapeutic drug monitoring of beta-lactam antibiotics–influence of sample stability on the analysis of piperacillin, meropenem, ceftazidime and flucloxacillin by HPLC-UV. Journal of Pharmaceutical and Biomedical Analysis, 143, 86–93.

    CAS  Google Scholar 

  • Pupin, R. R., Foguel, M. V., Gonçalves, L. M., & Sotomayor, M. D. P. T. (2020). Magnetic molecularly imprinted polymers obtained by photopolymerization for selective recognition of penicillin G. Journal of Applied Polymer Science, 137(13), 48496.

    CAS  Google Scholar 

  • Quesada-Molina, C., Claude, B., García-Campaña, A. M., del Olmo-Iruela, M., & Morin, P. (2012). Convenient solid phase extraction of cephalosporins in milk using a molecularly imprinted polymer. Food Chemistry, 135(2), 775–779.

    CAS  Google Scholar 

  • Refaat, D., Aggour, M. G., Farghali, A. A., Mahajan, R., Wiklander, J. G., Nicholls, I. A., & Piletsky, S. A. (2019). Strategies for molecular imprinting and the evolution of MIP nanoparticles as plastic antibodies—synthesis and applications. International Journal of Molecular Sciences, 20(24), 6304.

    Google Scholar 

  • Safari, M., Shamsipur, M., Zohrabi, P., & Ebrahimzadeh, H. (2019). Solid-phase extraction combined with dispersive liquid-liquid microextraction/HPLC-UV as a sensitive and efficient method for extraction, pre-concentration and simultaneous determination of antiretroviral drugs nevirapine, efavirenz and nelfinavir in pharmaceutical formulations and biological samples. Journal of Pharmaceutical and Biomedical Analysis, 166, 95–104.

    CAS  Google Scholar 

  • Samanidou, V., Michaelidou, K., Kabir, A., & Furton, K. G. (2017). Fabric phase sorptive extraction of selected penicillin antibiotic residues from intact milk followed by high performance liquid chromatography with diode array detection. Food Chemistry, 224, 131–138.

    CAS  Google Scholar 

  • Soledad-Rodriguez, B., Fernandez-Hernando, P., Garcinuno-Martinez, R. M., & Durand-Alegria, J. S. (2017). Effective determination of ampicillin in cow milk using a molecularly imprinted polymer as sorbent for sample preconcentration. Food Chemistry, 224, 432–438.

    CAS  Google Scholar 

  • Turiel, E., & Martín-Esteban, A. (2019). Molecularly imprinted polymers-based microextraction techniques. TrAC, Trends in Analytical Chemistry, 118, 574–586.

    CAS  Google Scholar 

  • Turiel, E., & Esteban, A. M. (2020). Molecularly imprinted polymers. In Solid-phase extraction (pp. 215-233). Elsevier.

  • Türkmen, D., Bereli, N., Çorman, M. E., Shaikh, H., Akgöl, S., & Denizli, A. (2014). Molecular imprinted magnetic nanoparticles for controlled delivery of mitomycin C. Artificial Cells, Nanomedicine, and Biotechnology, 42(5), 316–322.

    Google Scholar 

  • Urraca, J. L., Moreno-Bondi, M. C., Hall, A. J., & Sellergren, B. (2007). Direct extraction of penicillin G and derivatives from aqueous samples using a Stoichiometrically imprinted polymer. Analytical Chemistry, 79, 695–701pp.

    CAS  Google Scholar 

  • Weber, P., Riegger, B. R., Niedergall, K., Tovar, G. E., Bach, M., & Gauglitz, G. (2018). Nano-MIP based sensor for penicillin G: Sensitive layer and analytical validation. Sensors and Actuators B: Chemical, 267, 26–33.

    CAS  Google Scholar 

  • Willms, I. M., Yuan, J., Penone, C., Goldmann, K., Vogt, J., Wubet, T., Schöning, I., Schrumpf, M., Buscot, F., & Nacke, H. (2020). Distribution of medically relevant antibiotic resistance genes and Mobile genetic elements in soils of temperate forests and grasslands varying in land use. Genes, 11(2), 150.

    CAS  Google Scholar 

  • Wu, N., Luo, Z., Ge, Y., Guo, P., Du, K., Tang, W., et al. (2016). A novel surface molecularly imprinted polymer as the solid-phase extraction adsorbent for the selective determination of ampicillin sodium in milk and blood samples. Journal of Pharmaceutical Analysis, 6(3), 157–164.

    Google Scholar 

  • Yin, J., Meng, Z., Du, M., Liu, C., Song, M., & Wang, H. (2010). Pseudo-template molecularly imprinted polymer for selective screening of trace β-lactam antibiotics in river and tap water. Journal of Chromatography. A, 33, 5420–5426pp.

    Google Scholar 

  • Zhang, J., Wang, H., Liu, W., Bai, L., Ma, N., & Lu, J. (2008). Synthesis of molecularly imprinted polymer for sensitive penicillin determination in milk. Analytical Letters, 41(18), 3411–3419.

    CAS  Google Scholar 

  • Zhang, X., Chen, L., Xu, Y., Wang, H., Zeng, Q., Zhao, Q., Ren, N., & Ding, N. (2010). Determination of β-lactam antibiotics in milk based on magnetic molecularly imprinted polymer extraction coupled with liquid chromatography–tandem mass spectrometry. Journal of Chromatography B, 878, 3421–3426pp.

    CAS  Google Scholar 

  • Zhu, G., Cheng, G., Wang, P., Li, W., Wang, Y., & Fan, J. (2019). Water compatible imprinted polymer prepared in water for selective solid phase extraction and determination of ciprofloxacin in real samples. Talanta, 200, 307–315.

    CAS  Google Scholar 

Download references

Acknowledgments

This study was performed with financial support from Ege University Scientific Research Project Coordination (Project no.12/FEN/029).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sinan Akgöl.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 22 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuru, C.I., Ulucan, F., Kuşat, K. et al. A model study by using polymeric molecular imprinting nanomaterials for removal of penicillin G. Environ Monit Assess 192, 367 (2020). https://doi.org/10.1007/s10661-020-08294-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-020-08294-2

Keywords

Navigation